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Response of Chickpea (Cicer aritienum L.) to Sulphur and Zinc Nutrients 
Applications and Rhizobium Inoculation in North Western Ethiopia 

ABSTRACT 

In sub-Saharan Africa, plant nutrient deficiency, due to nutrient mining, is a major growth limiting factor 

for crop production. As a result, some soils become non responsive to Rhizobial inoculation. In an effort 

to find out possible correction, a field experiment was carried out on-farm, during 2016/17 growing 

season, at Gondar Zuria woreda in Tsion and Denzaz Kebeles to evaluate the effect of Rhizobium 

inoculation, S and Zn application on yield and yield parameters, nodulation, N and P uptake on chickpea. 

The soil at the experimental sites were previously diagnosed as non responsive to Rhizobium inoculation 

and P fertilizer application on chickpea (Cicer aritienum L.) and had low OM, N, P, S and Zn. The 

experiment included twelve treatments developed via factorial combination of two level of inoculation 

(Rhizobium inoculated, un-inoculated), three level of S (0, 15, 30 kg Sulphur ha-1) and two levels of Zn 

(0, 1.5 kg Zinc ha-1). The treatment was laid out in randomized complete block design with three 

replications. All plots have received basal application of 20 kg N ha-1and 20 kg P ha-1 uniformly. Zinc in 

the form of ZnSO4 was applied through foliar application and the remaining nutrients were applied at 

planting directly to the soil. Mean separation was made using the least significant difference (LSD) test 

at 5% level of probability. Analysis of variance showed that except plant height at both location and 

shoot dry weight and number of seed per pod at Tsion, all the remaining growth parameters (root length 

and root dry weight), yield and yield related traits (number of primary branches, number of pod, number 

of seed, hundred seed weight, grain and straw yield), crop phenology (days to 50% flowering and days 

to physiological maturity), nodulation scores (nodule number, nodule volume, nodule dry weight, 

effective nodule and nodulation rating), N and P uptake at both locations were significantly affected by 

the treatments. The highest (1775.5 kg ha-1) mean value of seed yield over locations was obtained from 

combined application of Rhizobium and 30 kg S ha-1 which resulted in 28 % (389 kg ha-1) increase over 

the control. The result also indicated that P use efficiency of chickpea was improved with Rhizobium 

inoculation and S fertilizer application. The partial budget analysis also showed that the maximum (ETB 

37069 ha-1) and minimum (ETB 30050 ha-1) net benefit were obtained from combined application of  

Rhzobium inoculation and 30 kg S ha-1and from the control check, respectively. The result determined 

a net benefit penalty of 23.4% (ETB 7019 ha-1). Hence, Rhizobium inoculation with application of 30 kg 

S ha-1 could be recommended for chickpea production at the experimental locations in Gonder Zuria 

Woreda.  

Kee word: Rhizobium inoculation, growth parameter, nodulation, yiled related trait, P uptake. 



 

 
 

1. INTRODUCTION 

It is a plain fact that nitrogen (N) is the key component of protein for human and animal 

consumption and it required for all plants for growth and development (Adler, 2008). It is the 

structural component of protein and nucleic acid. Nitrogen is also essential for synthesis of 

chlorophyll which is essential for capturing energy from sun light during photosynthesis (Grham 

and Vance, 2000; Dordas and Sioulas, 2008; Waraich et al., 2011). Crop yield can be increased 

by maintaining soil fertility and use of sufficient and balanced plant nutrients. Therefore, 

adequate supply of N is necessary to achieve potential yield. 

Nitrogen deficiency is a major factor limiting crop production all over the world (Salvagiotti, et 

al., 2008; Aminifard et al., 2010). This constraint is also common in the tropics and subtropics 

(Endalkachew, 2011). However, Bagayoko et al. (2011) reported that the use of fertilizers by 

African farmers was limited due to poor accessibility, availability and high prices. According to 

Yifru et al. (2007), chemical fertilizer played role in agriculture but the current increasing price 

and application below the recommended rate are the main limiting factors for most Ethiopian 

farmers for better production of crops. Hence, interest towards environmentally friendly 

sustainable agriculture practice, organic farming system has been growing (Rigby and Caceres, 

2001; Lee and Song, 2007). Therefore, there is an urgent need to realize a vital and cheaper 

source of fertilizer having eco-friendly approach. 

Pulse are leguminous crops which are rich in protein, vitamins and other nutrients are 

extensively cultivated for human consumption. These crops have the ability to reduce 

atmospheric N2 to usable form through biological nitrogen fixation (BNF) in association with 

root nodule bacteria. Legumes have special bacteria in their root system and make use of N from 

the air (Adjei et al., 2001). This association contributes 50-70 million tons annually to the global 

agricultural N budjet (Unkovich et al, 2008), this account for 40 to 70% of total global nitrogen 

input (Kahindi and Karanja, 2009). The major root nodule bacteria associated with pulse crops 

are; Rhizobium, Bradyrhizobium, Mesorhizobium, and Azorhizobium, collectively called 

rhizobia, can infect plants, leading to symbiotic interaction resulting in root nodule formation. 
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With these nodules, bacteria live in differentiated form, the bacteroid, and fix nitrogen by 

reducing atmospheric nitrogen to ammonia (Adjei et al., 2001). 

The formation of an effective symbiosis requires the existence of specific rhizobia in the soil 

that can nodulate host legume or inoculation of with effective rhizobia, and suitable 

environmental factors (Choudhry, 2012).  

The major the abiotic factors that affect effective symbiosis are; nutrient, pH, temperature, water 

holding capacity, water stress, salinity and nitrogen level are the major factors affecting BNF 

(Keerio, 2001; Panchali, 2011).  

For several years now, different studies have been undertaken on inoculation trial of several 

pulse crops in Ethiopia (Desta, 1988; Angaw and Asfaw, 2006). Accordingly, these field trial 

showed positive response of faba bean (Vicia faba L.) and chickpea (Cicer arientinum L.) to 

inoculation and NP fertilizer application. They also showed that inoculation increased the 

productivity of different pulse crops in some parts of Ethiopia. Several authors also indicated 

the positive effect of Rhizobium inoculation alone and in combination with NP fertilizer on 

different soil types (Asegilil, 2000; Amanuel et al., 2000; Ayneabeba et al., 2001). However, 

the productivity of chickpea in Ethiopia when compared to the potential yield is still very low. 

For instance, the national average productivity of chickpea (1.89 tone ha-1) (CSA, 2015) was 

still lower than 3.2 tone ha-1 which was recorded in Newzland (Verghis, 1996) and very lower 

than its potential yield (5.5 tone ha-1) obtained on experimental stations in Ethiopia (Belay, 

2006). This wide yield gap clearly indicates that research on chickpea should look beyond 

breeding and selection of improved varieties for yield and disease resistance.  

According to O'hara et al. (1988) to ensure full benefit from nitrogen fixation by legume 

symbiosis, successful breeding and management strategies should consider the whole legume-

Rhizobium system and selection of improved legume symbiosis. Around the world, different 

evidences revealed that inoculation of legumes with effective Rhizobium can increase the yield 

and the nitrogen fixing capacity (Beck and Duc, 1991; Ben Romdhane et al., 2008; KÖpke and 

Nemecek, 2010). On the other hand, due to environmental constraints and effectiveness of the 

native rhizobia, lack of response to inoculation in field experiments have been frequently 
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reported worldwide and raising doubts about the usefulness of inoculation (Graham, 1981; 

Buttery et al., 1987; Hameed et al., 2004). 

Several works indicated that Rhizobium inoculation integrated with the application of S, Zn, and 

other plant nutrients improved pulse crops production compared to Rhizobium inoculation alone 

(Togay et al., 2008; Bahure et al., 2016, Valenciano et al., 2011). According to Ganeshamurthy 

and Reddy (2000), an adequate supply of mineral nutrients to legumes enhances nitrogen (N) 

fixation and yield. This is due to the role of those nutrients in both plant growth and the 

symbiosis between rhizobia and the host plant. S affects leguminous plant species growth 

through its effect on N2 fixation process and involvement in the process of nitrogen fixation. 

Because of the relatively high S content of nitrogenase (Mortensen and Thornley, 1979) and 

ferredoxin (Yoch, 1979), S deficiency may affect N2 fixation. Ferredoxin has a significant role 

in nitrogen dioxide and sulphate reduction, the assimilation of N by root nodule bacteria and 

free living N-fixing soil bacteria (Scherer et al., 2008). Moreover, legumnious plant reqire a 

large quantity of S because of their high protein content. Zinc is also involved in various host 

plant metabolic processes, nodule growth and N2 fixation process. Zinc has also important role 

in activating plant enzymatic system, synthesis of chlorophyll and carbohydrates. 

In Ethiopia, Habtegebrial and Singh (2006) found positive effect of P application in nodulation 

and N2 fixation of faba bean. Beside this, Rhizobium inoculation plus P application increased 

the nodulation and N2 fixation of faba bean (Amanuel and Tanner, 1991; Habtegebrial et al., 

2007). Starter N application also increased the yield and nodulation of common bean in eastern 

part of Ethiopia (Anteneh and Daniel, 2016; Daba and Haile, 2000). In contrast to these findings, 

the effect of P application and Rhizobium inoculation on chickpea have been variable 

(unpulished data). There was non-significant effect of P application and Rhizobium inoculation 

on chickpea at Gondar Zuria Woreda (Dinzaz, Degolla and Tsion Kebeles) (Unpublished data). 

However, O'hara et al. (1988) found that correction of deficient nutrients (S and Zn) on top of 

P significantly improved the effectiveness of Rhizobial inoculation in terms of nodule 

development, nodule functioning and assimilation of nitrogen by the host plant.  

One way of improving the low productivity of chickpea is combined application of efficient, 

competitive and persistent strains of Rhizobium with deficient nutrients (P, S and Zn). To attain 
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this, it is essential to generate information by studying the response of chickpea to combined 

application of Rhizobium inoculation and S and Zn nutrient application. 

Hence, we hypothesized that correcting deficient nutrients in the study site improves the effect 

of P application and Rhizobium inoculation on nodulation and productivity of chickpea. This 

experiment was therefore, initiated to evaluate the effect of correcting limiting plant nutrient in 

effectiveness of Rhizobium inoculation in chickpea in selected sites of north western Ethiopia. 

The specific objectives of the study were  

 To evaluate the effect of combined application of Rhizobium inoculant, S and Zn 

nutrients on nodulation and yield of chickpea (Cicer arientinum L.)  

 To evaluate the effect of inoculation, S and Zn nutrient application on P use efficiency 

(Uptake) of chickpea in the study sites. 
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2. LITERATURE REVIEW 

2.1. Biological Nitrogen Fixation (BNF) 

Though molecular nitrogen represents nearly 80% of the earth’s atmosphere, it is chemically 

inert and cannot be directly assimilated by plants. Only limited numbers of prokaryotes are able 

to convert the N2 molecule into a usable form of N through a process known as biological 

nitrogen fixation (Allito et al., 2015). Biological nitrogen fixation is the process that changes 

inert N2 that is abundant in the atmosphere to biologically useful NH3 naturally by the help of 

prokaryotic organism such as eubacteria and cyanobacteria (Giller, 2001). Other plants benefit 

from nitrogen fixing bacteria when the bacteria die and release N to the environment, or when 

the bacteria live in close association with the plant. In legumes and a few other plants, the 

bacteria live in small growths on the roots called nodules. 

Biological nitrogen fixation is highly energy consuming process. Nitrogen molecules is reduced 

to NH3 under consumption of ATP and redox equivalents, and is associated with the formation 

of H2 as a byproduct (N2 + 8 H+1 + 8 e- +16 ATP→2NH3 + H2 + 16 ADP + 16 Pi) (Lodwig and 

Poole, 2003). The enzyme that catalyzes the reaction is called nitrogenase and consists of the 

dinitrogenase reductase protein (Fe protein) and dinitrogenase (MoFe protein) which actually 

catalyzes the reduction of N2. 

In terrestrial ecosystem, there are three major strategies to fix or reduce atmospheric nitrogen to 

plant usable form: symbiotic, non-symbiotic or associative, and free livings N2 fixation. The 

most important N2 fixing agents in agricultural systems are the symbiotic associations between 

legumes and the microsymbiont rhizobia bacteria (Giller, 2001) followed by non-symbiotic 

nitrogen fixation. Since free-living diazorophs are heterotrophic bacteria and are subjected to 

substrate limitation and their contribution in nitrogen fixation is very small (Marschner, 1995). 

The terrestrial input (natural origin and human activities) of N from BNF accounts for 

approximately 240–280 t N year-1 (Galloway, 1998), this amount is much higher compared to 

the 85 t N year-1 consumed as nitrogenous fertilizers all over the world in 2002 (FAO, 2008).  

The nitrogen-fixing symbiosis between legumes and prokaryotic microorganism (bacteria) is 

characterized by the formation of nodules, which are subsequently colonized by the specific 

microsymbionants. The prokaryotic partners include number of family Rhizobiaceae, 



6 
 

 

collectively named rhizobia (genera Bradyrhizobium, Rhizobium, Mesorhizobium, Ensifer, or 

Sinorhizobium, Azorhizobium, Allorhizobium) as well as other taxa (Burkholderia (Moulin et 

al., 2001), Ralstonia (Chen et al., 2001), Methylobacterium (Sy et al., 2001), and Devosia (Rivas 

et al., 2002). 

The first step in symbiotic interaction is infection by the microsmbionant. Infection by the 

microsymbionant may occur on developing root hairs, at the junction of lateral root or the base 

of the stem. When nitrogen in the soil is insufficient, legumes release flavonoids which signal 

to rhizobia that the plant is seeking symbiotic bacteria (Ndakidemi and Dakora, 2003). In 

response, the rhizobia releases nodulation factor which stimulates the plant to create deformed 

root hairs (Banfalvi and Kondorosi, 1989). Rhizobia then form an infection thread for allowing 

them to enter the root cells through root hairs (Gage et al., 1996). When the rhizobia are inside 

the root cells, the cells divide rapidly to form nodule (Dudley et al., 1987). Then the rhizobia 

convert atmospheric nitrogen into ammonia, a form that is directly used by the plant for 

synthesis of amino acids and nucleotides, the plant provides the bacteria with sugars, hence the 

symbiosis is established.  

The transformation of the bacteroids is accompanied by the synthesis of hemoglobin, 

nitrogenase and other enzymes required for N2 fixation (Rolfe and Gresshoff, 1988). The plant 

must contribute a significant amount of energy in the form of photosynthate (photosynthesis 

derived sugars) and other nutritional factors for the bacteria. The bacteria in turn supply the 

plant with ammonium or ammonia.  

Depending on the legume species and germination condition, small nodules are visible with 

naked eye within a week after infection. In the symbiotic nitrogen-fixing organisms such as 

Rhizobium, the root nodules can contain oxygen-scavenging molecules such as leghemoglobin, 

which shows as a pink color when the active nitrogen-fixing nodules of legume roots are cut 

open. Leghemoglobin may regulate the supply of oxygen to the nodule tissues in the same way 

hemoglobin regulates the supply of oxygen to mammalian tissues. When nodules are young and 

not yet fixing nitrogen, they are usually white or grey inside (Nair, 2007). 
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2.2. Effect of Rhizobium Inoculation on Pulse Production 

According to Ladha et al. (1988), the use of mineral N fertilizer in production has increased but 

its agronomic use efficiency is less than 50%. But unfortunately a substantial amount of the 

urea-N is lost through different mechanisms causing environmental pollution problems 

(Chowdhury and Kennedy, 2004). Rigby and Caceres (2001) reported that the extensive use of 

chemical fertilizer in agriculture is resulted in environmental health problem and do have a 

negative impact on consumers’ health. As a result interests have been increasing in 

environmentally friendly sustainable agriculture practice and organic farming system. Therefore 

biofertiliztion is of great importance in alleviating environmental pollution and deterioration of 

nature (Elkoca et al., 2008). Vessey (2003), indicated that biofertilizers are materials with 

beneficial inoculants, when applied to the soil, seed or plant surface colonizes the rhizosphere 

or the interior of the plant and promote growth by facilitating the supply or availability of 

nutrient through natural processes like nitrogen fixation and phosphate solubilizing. The 

different types of biofertilizers includes: nitrogen fixing biofertilizers, e.g. Rhizobium, 

Bradyrhizobium, Azospirillum and Azotobacter; phosphorus solubilising biofertilizers (PSB), 

e.g. Bacillus, Pseudomonas and Aspergillus; phosphate mobilizing biofertilizer, e.g. 

Mycorrhiza; and plant growth promoting biofertilizers, e.g. Pseudomonas. Increasing and 

extending the role of Rhizobium biofertilizers can reduce the need for chemical fertilizers and 

decrease adverse environmental effects (Erman et al., 2011; Namvar et al., 2013).  

According to Namvar et al. (2013), legume is a major contributor to sustainable agriculture 

through its ability to fix N2 to usable form and as a rotation crop that is important for 

diversification of agricultural production systems. As a result the ability of legume to fix 

atmospheric N and their residual impact on soil N status makes its rotation in agricultural system 

important (Glasener et al., 2002). According to Giller et al. (1998) the quantity of N that the 

legume fixed and the N which is incorporated in to the soil and the time-span of the 

decomposition of the residue and the synchrony with nutrient need of the subsequent crops are 

factors that affect to what extent the legume crop can benefit a subsequent crop. 

According to KÖpke and Nemecek (2010), under broad spectrum condition faba bean can 

symbiotically fix atmospheric nitrogen and make available for the next crop. So inoculation of 
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faba bean with effective rhizobia increases nodulation, N fixation, growth and yield of their host 

plant (Beck and Duc, 1991). Walley et al. (2007) also reported that effective inoculation of 

legume can fix sufficient quantities of N. Therefore, inoculation with efficient rhizobia is 

recommended in environments where compatible rhizobia are absent, soil rhizobial population 

density has been reduced, or where rhizobia are shown to be less effective (Chemining'wa and 

Vessey, 2006). But in some cases, resident soil rhizobia including native rhizobia and those 

naturalized through past inoculation, may have impacting inoculation success through its impact 

on competance for nodule occupancy with introduced rhizobial strains (Denton et al., 2002).  

Different researches indicated that amount of N fixed by faba bean vary greatly, Duc et al. 

(1988) reported that it can fix 40 Kg ha-1. But according to Danso (1992) faba bean can fix about 

120 Kg ha-1. Between these values, Brunner and Zapata (1984) reported that faba bean can fix 

about 93 Kg ha-1. Fassil (2010) reported that growing faba bean can improve the orginal soil N 

by 10.6 times than the orginal soil N. 

The effect of Rhizobium inoculation on chickpea yield depends on the native rhizobial status. If 

previously well nodulated chickpea was grown, Rhizobium inoculation is not required. Rhinhart 

et al. (2003) reported that chickpea fix 60-80% of its nitrogen requirement with symbiotic 

association with the nitrogen fixing bacteria, N application is not necessary for the crop. This 

can be achieved only if the bacteria is present in the soil. According to ICRISAT (1987), 

inoculation with Rhizobium is required where chickpea is being grown after paddy or chickpea 

is being introduced for the first time. According to Ben Romdhane et al. (2008) inoculating 

chickpea with competitive strain of rhizobia can improve the growth and yield of chickpea and 

hence this is one of the most important and economically feasible way of increasing productivity 

of the crop. Seed inoculation of chickpea can improve grain yield and quality up to 50 percent 

(Kyei-Boahen et al., 2002). Fatima et al. (2008) also reported that Rhizobium inoculation 

increase plant height, grain yield and nitrogen fixation in chickpea. Togay et al. (2008) found 

that inoculation with Rhizobium significantly increased the plant height, number of branches, 

pods and seeds per plant, grain and dry matter yield in chickpea. 

Researches conducted in Oromia, Amhara (Gondar) and South Nations, Nationalities and people 

region indicated chickpea respond strongly to inoculation (Ali et al., 2004). Studies in other 

countries also indicate that chickpea positively responds to Rhizobium inoculation. In Iran and 
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Canada, the grain yield was found increased by 8 to 40%. In Pakistan, combined application of 

Rhizobium with 90 kg P 90 kg ha-1 increse grain and stover yield of chick pea from1600 to 3100 

and from 4350 to 7500 kg ha-1, respectively (Ali et al., 2004). Other finding also reported that 

inoculation with Rhizobium and mycorrhiza improved both grain and stover yields by about 

60% in Turkey (Erman et al., 2011) 

2.3. Factors Affecting Biological Nitrogen Fixation 

Nitrogen fixation is one of the important soil microbial activities affected by all on-going 

processes in soil as well as other microorganisms. The many different environmental factors in 

soil affecting these processes are low or extremely high level of soil moisture, salinity, 

deficiency of nutrient, extreme temperature, water holding capacity, nitrogen level, unfavorable 

soil pH, mineral toxicity (Giller, 2001 and Panchali, 2011). Many of these factors affect many 

aspect of nitrogen fixation and assimilation, as well as factors such as respiratory activities, 

gaseous diffusion and the solubility of dissolved gasses, which ultimately affect host plant-

Rhizobium association and hence plant growth (Keerio, 2001).  

The moisture stress can adversely affect the nodule functions. The drought conditions can 

reduce nodule weight and nitrogenase activity. According to Ramos et al. (2003) after exposure 

to the moisture stress for 10 days, the nodule cell wall starts to degrade resulting in senescence 

of bacteroids. Durrant (2001) also found the direct and indirect effect of moisture to nitrogen 

fixation. Low moisture condition in soil resulted in a hindrance to nodule respiration as a result 

nitrogen in nodule moves out slowly. Several studies conducted in Egypt and abroad have shown 

that nodulated plants of faba bean exhibit a high degree of correlation between N2 fixation and 

soil water content (Abdel‐Ghaffar, 2009). 

High salt level can directly affect the early infection between the Rhizobium and legume in 

nodule formation (Singleton and Bohlool, 1984). According to Caesar and Rusitzka (1982) as 

cited by Abdel-Ghaffar (2009) this harmful effect is attributed to; direct toxicity of the salt, 

reduction in availability of soil water due to high osmotic pressure of soil solution, changes in 

availability of nutrients due to ion antagonism, and changes in physical properties of soil 

restricting water movement or reducing root penetration. 
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Agricultural management factors can also influence BNF. Choice of variety, plant density and 

inoculation also affect BNF and hence plant growth and development (Ronner and Franke, 

2012). According to Solomon et al. (2012) legume species and variety can have an effect on the 

amount of nitrogen fixed. Disease conditions which affect the plant growth and development 

can also affect the persistent Rhizobium strain to perform root infection and ultimately the ability 

of the legume to fix atmospheric N to its full capacity (Panchali, 2011). Higher plant population 

density shows either positive or negative for percentage of nitrogen fixed from the atmosphere. 

Higher density may increase the amount of fixed nitrogen due to increased competition for soil 

nitrogen. On the contrary higher density may have a negative impact on nitrogen fixation as a 

result of competition for other nutrient and moisture (Naab et al., 2009; Makoi et al., 2009). 

Tillage practice, selection of effective and responsive crops, appropriate cropping system, 

method and time of sowing, use of agrochemicals, use of Rhizobium culture and its frequency, 

the way of handling the inoculant and the method of inoculation also affect BNF by affecting 

both the crop and the microbial activity (Kantar et al., 2010).  

According to Abdel‐Ghaffar (2009) failure of faba bean to respond to inoculation could be 

attributed to the presence of an abundant supply of effective R. leguminosarum strains in soil, 

inefficient inoculant caused by non-viable cell, contaminated with antagonistic organisms, 

unsuited for the host plant or low in density of Rhizobium cells, direct contact of inoculated 

seeds with fertilizers, toxic chemicals, lack of certain nutrient such as P, Mo, Zn, Co, B, and/or 

(g) excess P or N fertilization. O'hara et al. (1988) reported that multiplication of rhizobia, 

nodule initiation, nodule development, nodule functioning and assimilation of nitrogen by the 

host plant is negatively affected by Ca, Co, B/Fe, Mo and Zn deficiency. 

2.4. Essential Mineral Nutrients for BNF 

The essential mineral nutrients for symbiotic legume nitrogen fixation are those required for the 

normal establishment and functioning of the symbiosis. Based on Arnon and Stout (1939) the 

following chemical elements are known to be essential for the legume- Rhizobium symbiosis: 

C, H, O, N, P, S, K, Ca, Mg, Fe, Mn, Cu, Zn, Mo, B, C1, Ni and Co. Each essential nutrient has 

specific physiological and biochemical roles and there are minimal nutrient concentrations 
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required within both legumes and rhizobia to sustain metabolic function at rates which do not 

limit growth (O'hara et al., 1988; Weisany et al., 2013). 

2.4.1. Sulphur 

Sulphur (S) is the fourth major element required for plant growth next to N, P, and K and most 

crops absorbs as much S as it absorb P. Sulphur deficiency has been reported in the last years 

even in many previously sulphur sufficient areas of the world. Scherer (2009) reported that S is 

becoming deficient due to cultivation of high yielding variety, use of high grade S free fertilizer, 

and absence of industrial activities. Eriksen et al. (2004) also indicated that less S is being added 

to soils due to the decreasing use of S-containing fungicides, pesticides, and due to the reduction 

of sulphur dioxide emission from industrial sources (Scherer, 2001; Eriksen et al., 2004). 

Tandon (1989) reported that when S is deficient in soil, full yield potential of the crop cannot 

be realized even in good crop husbandry practices. 

S plays a great role in plant metabolism. It constitutes the main element of amino acids (cysteine 

and methionine), which are of essential nutrient value and needed for protein synthesis (Jan et 

al., 2002). Ferro-sulphur proteins play an important role in nitrogen fixation and electron 

movement in photosynthesis (Kadıoğlu, 2004). Katyal et al. (1987) also reported that the 

nutrition value of cereals is determined by the proportion of S containing amino acids. 

Leguminous plant species require a large quantity of S, probably because of their high protein 

content. Average S removal for producing 1 tone of food grain is estimated to be 3-4 kg by 

cereals (wheat and rice), 5-8 kg by sorghum and millet, 8 kg by pulses and legumes and 12 kg 

by oilseeds (Kanwar and Mudahar, 1985). Therefore, S deficiency in legume crops affects yield 

formation, quality and the nutritional value of seeds (Sexton et al., 1998). This is mainly because 

methionine is usually the most limiting essential amino acid in legume seeds (Friedman, 1996).  

 Moreover, S has important function in reduction of CO2, formation of chlorophyll and 

production of organic compounds (Scherer, 2008). Photosyntehtic product is the ultimate source 

of carbon for both N2 fixation and assimilation (Vance et al., 1998). Kacar (1984) reported that 

S has positive effects on root growth in plants and positively affects nodulation in legume crops 

in particular. S is also a vital part of the ferredoxin, an iron-sulphur protein occurring in the 

chloroplasts. Ferredoxin has a significant role in nitrogen dioxide and sulphate reduction, the 
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assimilation of N by root nodule bacteria and frees living N-fixing soil bacteria (Scherer et al., 

2008). 

Legume crops obtain N mainly from symbiotic N2 fixation, which may be affected by S 

deprivation. Scherer and Lange (1996) found a lower N accumulation and a yield reduction 

when S was limiting. S application and inoculation have immense potentional of increasing the 

amount of N fixed by legumes, thus improving fertility status of soil (Habtegebrial et al., 2007). 

Lange (1998) suggests that S affects growth of leguminous plant through its effect upon N2 

fixation by Rhizobium microorganisms. Because of relatively high S content of the nitrogenase 

(Mortensen and Thornley, 1979) and of ferredoxin (Yoch, 1979), S deficiency may affect N2 

fixation. Growth and nitrogen (N) fixation rates by legume could be increased by highly 

efficient, competitive and persistent strains of Rhizobium (Amanuel et al., 2000). In addition, 

supply of adequate amount of P and S increased this process (Olivera et al., 2004; Scherer et 

al., 2008). According to Muhammad et al. (2013). Application of both phosphorus and sulphur 

resulted in increase in nitrogen fixation up to 38% and 33% over control, respectively. Nutrient 

uptake of nitrogen, phosphorus and S increased significantly with the application of P and S and 

positively correlated with nitrogen fixation. The same author also reported that, there is direct 

involvement of sulphur in the process of nitrogen fixation whereas effect of phosphorus on 

nitrogen fixation is indirect mainly through enhanced growth and dry matter production. Togay 

et al. (2008) also reported that chickpea variety applied with phosphorus, sulphur and 

inoculation resulted in higher grain yield. S application significantly increased the uptake of Fe, 

Mn, Zn and Cu in grain in the both years. Despite the importance of this element in crop 

production, it is still not included in fertilizer recommendations of Ethiopia especially for 

legume crops like chickpea. 

2.4.2. Zinc 

Zinc (Zn) has an important metabolic role in plant growth and development and therefore, called 

an essential trace element or micronutrient (El Habbsha et al., 2013). Zinc is involved in various 

host plant metabolic processes, nodule growth and N2 fixation processes. Zn uptaken and 

transfered in the form of Zn2+ in plants and an essential nutrient that has particular physiological 

functions in all living systems, such as the maintenance of structural and functional integrity of 

biological membranes and facilitation of protein synthesis and gene expression, enzymes 
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structure, energy production and Krebs cycle; also has a positive impact on crop yield (El 

Habbsha et al., 2013). In addition to having an important role in activating plants enzymatic 

systems. Zn is essential for the synthesis of chlorophyll and carbohydrates. This element plays 

an important role in the metabolism of nitrogen, synthesis of amino acid tryptophan, metabolism 

of starch, plants flowering and fruit set, increasing plant resistance to fungal disease and 

expanding plant roots (Bahure et al., 2016).  

Zn solubility decreases markedly above pH 6.0-6.5 (Sims, 2000) and thus, Zn, deficiencies can 

be encountered in neutral to alkaline soils (Roy et al., 2006). Zn deficiency in soil is one of the 

most important factors reducing production of such plants as corn, soybean, bean, rice and 

wheat. Not only Zn deficit reduces these crops yields and production, but also results in 

reduction of their nutritional value (Bahure et al., 2016). In Zn deficient plants, protein synthesis 

and protein levels are markedly reduced, but amino acids and amides are accumulated as Zn is 

the structural component of the protein synthesizing polymerase enzyme. Hence, in Zn deficient 

plants, the protein synthesis of Ribonucleic Acid (RNA) is impaired (Fageria, 2009). 

In legume plant, deficiency of Zn is found to reduce the number and size of nodules as it is 

possibly involved in leghaemoglobin synthesis. Moreover, Zn deficiency resulted in delay in 

crop maturity, reduces water use and water use efficiency (Khan et al., 2004), nodulation and 

nitrogen fixation (Ahlawat et al., 2007), inturn reduced crop yield. Zn uptake is positively 

correlated with the amount of organic matter in the soil and negatively correlated with P 

concentration in the soil (Hamilton et al., 1993; Ahlawat et al., 2007). 

Zn is the main micronutrient limiting chickpea productivity (Fageria, 2009). Zn deficiency is 

common in the chickpea growing regions of the world and is perhaps the most widespread of 

micronutrient deficiencies (Roy et al., 2006; Ahlawat et al., 2007). Chickpea is generally 

considered sensitive to Zn deficiency (Khan, 1998). Many researches indicate that application 

of Zn has a positive role in the nodulation and grain yield of legumes . According to Bahure et 

al. (2016), application of Zn, Fe and Mn significantly affect yield parameters of soybean and 

they conclude that this is due to better uptake and translocation of plant nutrients to growing 

plants and more photosynthesis which in turn promoted more number of leaves, leaf area and 

dry matter production. Valenciano et al. (2011) also reported that plants fertilized with Zn and 
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with Mo had a greater total dry matter production and seed yield of chickpea, mainly due to an 

increment in pod dry matter. The highest yield was obtained with 2 mg Zn per plant.  

Abdel-Salam (1986) as cited by Abdel‐Ghaffar (2009) showed that foliar application of Zn to 

faba bean plants with and without nitrogen fertilization increased nodule number and dry 

weight, nitrogenase activity, dry weight of plants, and plant uptake of N and P. A research 

conducted in Tigray showed an increasing trend in nodule number and dry weight with 

increasing Zn fertilization (Weldu and Habtegriel, 2013). Similarly, the combined fertilization 

of P and Zn fertilizers showed significant effect on P, Zn and N concentration of plant leaves.  

An important aspect of P and Zn nutrition is the interaction effect between them, especially in 

soils marginally deficient in P and Zn. If P and Zn are fertilized together in such soils, crop 

yields would be increased with positive interaction of  P and Zn (Havlin et al., 2005). However, 

high P availability or fertilization of P alone is found to induce Zn deficiency in plants, 

commonly known as P induced Zn deficiency (Cakmak and Marschner, 1987). At high P 

availability, the physiological availability of Zn is decreased, where its solubility and mobility 

both within the cell and in long distance transported to the shoot apex is also affected. 

Furthermore, with Zn deficient plant, cellular regulation of P uptake is impaired, causing 

absorption of toxic levels of P and transportation to plant tops, creating symptoms resembling 

Zn deficiency (Havlin et al., 2005). High soil P availability or fertilization also increases the 

shoot to root ratio of plants, resulting in short root length, thus, suppressing mycorrhizal uptake 

of Zn, which is the major Zn acquisition process by plants.  
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3. MATERIALS AND METHODS 

3.1. Description of the Study Areas 

3.1.1. Gondar Zuria District 

Gondar Zuria is located 730 kms Northwest of Addis Ababa in Amhara National Regional State. 

It is one of the sixteen Woredas of North Gondar Zone of the Amhara National Regional state. 

It is bordered in the south by the Debub Gondar Zone, in the southwest by Lake Tana, to the 

west by Dembiya, to the north by Lay Armachiho, to the northeast by Wegera, and to the 

southeast by Belessa. Towns in Gondar Zuria district include Degoma, Emfraz, Maksegnit and 

Teda (CSA, 2005). The total area of this district is 114983 ha of which, 38830 ha-1, 11073 ha-1, 

16851 ha-1, 17016 ha-1 and 2065 ha-1 of the Woreda were covered by agricultural land, forest 

land, bush land, grazing land and un-cultivated land, respectively (GOZOARD, 2016). 

Agro ecologically, the altitude gradient of Gondar Zuria District is within the range of 1107-

3022 m a.s.l, and have three agro ecological zones. The two agro ecology zones, Weynadega 

(1500 - 2300 m a.s.l) and Dega (2300-3200 m a.s.l.) constitute the largest area coverage as 

compared to the Kolla (GOZOARD, 2016). According to GOZOARD (2016) in the district 

(Maksegnit) mean annual temperature ranges between 14-20°C with the mean of 17.9°C (From 

11 year collected data from Maksegnit). The rainfall varies between 1030-1223 mm with the 

mean annual rainfall of 1100 mm (According to 18 year collected data from Maksegnit). The 

soils of the district are Litic Luvisols (49%), Humic Nitisols (10%), Haplic Luvisols (12%), 

Eutric Vertisols (16%) and Chromic Luvisols (13%) (GOZOARD, 2016) 

Specifically, this on farm exprirment was conducted at Tsion Kebele (37033'33.9''E-

37033'34.1''E longitude and 12025'00.9''N-12025'00.93''N latitude with an elevation of 1924m) 

and Das Denzaz Kebele (37036'24.9''E-37036'25.01''E longitude and 12025'08.1''N-

12025'08.13''N latitude with an elevation of 2037m). 

3.1.1.1. Tsion Siguaje Kebele 

Tsion kebele is located at 1 km away from Woreda Town Maksegnit. Agro ecologically, it is 

categorized under Woynadega, with altitude range between 1800-2000 m.a.s.l. The total land 

area of the district is 1963.37 ha-1 and of which, agricultural land shares 1143 ha-1. The dominant 
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crops being cultivated in this district are sorghum, Tef, Chickpea, Maize, Wheat and, Barley 

(GOZOARD, 2016). According to GOZOARD (2016) the dominant soil type covering 80 % is 

Vertisols followed by 15% Nitisols and 5% Cambisols.  

3.1.1.2.Das Denzaz Kebele 

This Kebele is located at 12 km away from woreda town Maksegint. Agro ecologically, it is 

categorized as Woyenadega. According to GOZOARD (2016) the dominant soil type covering 

64 % is Cambisols followed by 21% Nitisols and 14.5% Vertisols. From the total area of the 

Kebele, the share of agricultural land is 1486 ha-1 (43.7 %). Tef, wheat, sorghum, chickpea, 

barley, and potato are the major crops cultivated in this kebele. Intercropping barley with 

sorghum and barley with lentil are practiced in the area.  

 

Figure 1. Location map of the study area 
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Figure 2. Long term meteorological  data of Maksegnit 
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Figure 3. Daily rain fall distribution during the experiment (planting to late pod setting stage) 
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Figure 4. Daily max, min and mean temperature during the experiment (planting to late pod 
setting stage) 
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3.2. Experimental Details and Data Collection 

3.2.1. Soil and Plant Sample Collection and Processing 

To identify the possible yield limiting essential nutrient in the study sites, soil samples were 

collected from those experimental sites on which diagnosis and demonstration of P fertilizer and 

Rhizobium inoculation trial were implemented in 2014/15 cropping season. Five separate 

composite surface soil samples (0-30 cm depth) were collected from Gondar Zuria woreda 

(Tsion, Denzaz and Degola Chenchya kebele) from 10 sampling spot of the entire experimental 

site before planting for determination of the physico-chemical properties of the soil and hence 

for identification of the limited plant nutrients. Soils were air dried, ground and mixed 

thoroughly and passed through a 2 mm sieve for most parameters except for OC and TN which 

passed through 0.5 mm sieve. The samples were then labeled and stored in sealed plastic bags 

for laboratory analysis of; texure, pH, TN, OC/OM, CEC, exchangeable cations (Ca, Mg, K, 

and Na) extractable P, extractable S, and micronutrients (Zn, Fe, Cu and Mn).  

At physiological maturity, five randomly selected plants were harvested at the ground level and 

partitioned in to grain and straw. The plant material was dried to a constant weight in a forced-

draft oven at 70°C to a constant weight, grounded and passed through 1 mm sieve for 

determination of N and P concentration in grain and straw. 

3.2.2. Determination of Soil Physico-Chemical Properties 

Soil particle size distribution was determined by hydrometer method (Bouyoucos, 1951). Soil 

pH was measured with digital pH meter potentiometerically in supernatant suspension of 1:2.5 

soil to distilled water ratio (Van Reeuwijk, 1992). Cation exchange capacity (CEC) was 

determined by 1M ammonium acetate method at pH 7 (Chapman, 1965) whereas organic carbon 

(OC) was determined by the dichromate oxidation method (Walkley and Black, 1934). Total N 

in the soil was measured by the micro kjeldhal method (Jackson, 1958). Available P was 

analyzed by Olsen method (Olsen et al., 1954) colorimetrically by the ascorbic acid- molybdate 

blue method (Watanabe and Olsen, 1965).  

Available S was analyzed by FAO-turbidimetric method (Ajwa and Tabatabai, 1993). From 1 

M ammonium acetate leacheate, Exchangeable Ca++ and Mg++were measured by Atomic 
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Absorption Spectrophotometer while exchangeable Na+ and K+ were determined by flame 

photometer. Micronutrient (Zn, Mn, Fe and Cu) were measured using Dietylene Triamine Penta 

Acetic Acid (DTPA) extraction following the procedure developed by Lindsay and Norvell as 

outlined by Sahlemedhin and Taye (2000). Finally, the status of those nutrients which are 

essential for BNF were rated. The treatments were developed based on those nutrients rated as 

low in the study sites.  

3.2.3. Plant Sample Analysis 

For plant sample analysis, grounded material (only tops) was digested with a 2:1 mixture of 

nitric (HNO3) and perchloric acids (HC1O4) for P determination. Phosphorus concentration in 

the shoot was analyzed colorimetrically (Morais and Rabelo, 1986). Nitrogen content was 

determined using Modified micro-Kjeldahl Method (Jackson, 1958). About 0.25 g for grain 

samples, and 0.50 g for straw were taken for analysis. The total N and P in the grain and straw 

were finally expressed in percentage. 

3.2.4. Enumeration of Indeginous Rhizobia Nodulating Chickpea 

The numbers of indigenous rhizobia nodulating chickpea (Cicer artenium L.) present in the soils 

of the study sites could nodulating chickpea was estimated by the most-probable-number 

(MPN), plant infection technique following Somasegaran and Hoben (1994). For this purpose, 

soils were collected two days ahead of planting from the top 20 cm from five locations and 

bulked to one composite sample per farm. The samples were brought to laboratory and stored 

in a refrigerator at 4°C until pot experiment started. 

This experiment was conducted under semi-controlled greenhouse at Haramaya University. 

Uniform size, high viability and healthy seed of chickpea var. Arerti was used. Seeds were 

surface sterilized with 95% of ethanol and in 3% (v/v) solution of sodium hypochlorite. The 

seeds were successively rinsed in sterilized distilled water several times. The sand was sterilized 

in dry oven at 160 OC for 1.5 hrs two times. The sterilized sand was added to plastic pot. Three 

sterilized seeds were planted to each plastic pot and allowed to germinate. After germination, 

two seedlings were removed and one health seedling was maintained for nodulation scoring.  
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A tenfold serial dilution was prepared by adding 1 gram of soil in to 9 ml of distilled water and 

sequentially diluting 1 in 10 to give a dilution series to 10-10. The pots were inoculated with each 

of the ten serial dilutions from the soil by using 1 ml aliqutos. Each dilution was replicated four 

times. The plants were frequently inspected and water was provided periodically. After three 

weeks, they were carefully uprooted and the numbers of nodulated pots were recorded. The 

numbers of rhizobia were calculated using the following formula:  

X = 
୫ ଡ଼ ୢ

୴
 

Where: 

 m = Likely number from the MPN table for the lower dilution of the 
series  

d = Lowest dilution (first unit used in the tabulation) 

 v = Volume of aliquot applied to plant  

 X = The MPN per gram of inoculant 

3.2.5. Field Trial on The Study Site 

3.2.5.1. Expermental Design and Treatments 

The experiment comprised of three factors with two levels of Rhizobium inoculation (R1 = 

Rhizobium inoculated and R0 = Un-inoculated), three levels of sulphur (0, 15 and 30 kg S ha-1) 

(Muhammad et al., 2013) and two levels of Zn (0 and 1.5 kg Zn ha-1) (Valenciano et al., 2009). 

The factorial combinations of the three factors (2*3*2 = 12) were laid in randomized complete 

block design with three replications. In addition, the negative control (without fertilizer and 

Rhizobium inoculation) was included to determine the P use efficiency. 
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Treatment combinations used in the experiment 

1. Rhizobium inoculation alone  

2. Rhizobium inoculation +15 kg ha-1 Sulphur 

3. Rhizobium inoculation + 30 kg ha-1 Sulphur 

4. Control check 

5. 15 kg ha-1Sulphur alone 

6. 30 kg ha-1Sulphur alone  

7. Rhizobium inoculation + 1.5 kg ha-1 Zinc 

8. Rhizobium inoculation + 15 kg ha-1Sulphur + 1.5 kg ha-1 Zinc 

9. Rhizobium inoculation + 30 kg ha-1 Sulphur + 1.5 kg ha-1 Zinc 

10. 1.5 kg ha-1 Zinc alone 

11. 15 kg ha-1Sulphur +1.5 kg ha-1 Zinc  

12. 30 kg ha-1Sulphur + 1.5 kg ha-1 Zinc 

13. Negative Control (without fertilizer (including starter N and P) and Rhizobium 

inoculation) 

3.2.5.2.  Land preparation  

Land preparation (ploughing, and leveling) was done based on the recommendation given to the 

crop. 

3.2.5.3. Source of Rhizobial Isolates 

Rhizobium ciceri strain CPM41 that was selected based on its ability to enhance nodulation and 

grain yield under wide ecological condition was obtained from MBI (Menagesha Biotechnology 

Industry). 

3.2.5.4. Source of Improved Seeds  

The chickpea variety “Arerti” was used as test variety. The variety was selected based on the 

recommendation of Gondar Agricultural Research Center (GARC) for the area and the seeds 

were received from extension and economics department of GARC.  
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3.2.5.5. Method of Seed Inoculation  

Seed inoculation was performed before sowing using the procedure developed by Fatima et al. 

(2007). To ensure the sticking of the applied inoculant to the seeds, the required quantity of seed 

was suspended in 1:1 ratio in 10% sugar solution. The inoculant was gently mixed with dry 

seeds at the rate of 10 g per kg of seed. Inoculation was done just before sowing under shade to 

maintain the viability of cells and allow to air dry for a few minutes and then the inoculated 

seeds were sown at recommended rate and spacing to the respective plots. To avoid 

contamination, plots with un-inoculated seeds were planted first followed by the innoculated 

ones. 

3.2.5.6. Sowing  

The plot size used was 3 m x 3.4 m (10.2 m2). Seeds were sown in rows by maintaining 30 cm 

and 10 cm between the rows and plants, respectively. There were 10 rows per plant and 34 plants 

in each row. A net plot size was 3.4 m x 1.8 m (6.12m2) was for the final harvest. The spacing 

betweeb each plot and block were 1 m and 1.5 m, respectively.  

The planting was done on September 13 and 15/2016 at Denzaz and Tsion, respectively. To 

maintain the population in each treatment, two seeds per hill were planted and thinned to a single 

plant per hill after two weeks of germination. Ridges were made between each plot and block 

to reduce the movement of bacteria and fertilizer from one plot to the other by rain. Weeding 

and fungicide spray were done regularly to keep the experimental plants free of weed and 

disease. 

3.2.5.7.  Fertilizer Application  

All treatments (except the negative control) received equal amount of starter inorganic 20 kg N 

ha-1 (Anteneh and Daniel, 2016), 20 kg P ha-1 (Ahlawat and Ali, 1993; Ramakers, 2001) in the 

form of Urea and Triple super phosphate, respectively. Different rates of calcium 

sulfate/gypsum and zinc sulfate were applied as indicated in the treatments. Zinc sulfate was 

applied on foliar parts ( El-Habbasha et al., 2013; Pathak et al., 2012). The remaining fertilizers 

were applied directly to the soil at the time of planting (Corp et al., 2004).  
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3.2.6. Data Collection  

3.2.6.1. Data Collected at Late Flowering Stage 

Sampling for nodulation was performed by excavating the roots of plants randomly from two 

rows next to boarder rows of each plot at the mid flowering stage of the crop. Uprooting was 

done by spade and shovel and soil was removed from the root system by hand. The adhering 

soil was removed by washing the roots gently with water over a metal sieve. Nodules remaining 

in the soil were picked up by hand. The plants from each plot were used to record the following 

observations. 

Nodule rating: Nodulation rating was done by careful uprooting of five plants with intact 

nodule. The plants were examined for nodulation in the tap root, in the secondary root but close 

to the tap root, scattered all over the root and plants showing no root nodulation. The rating of 

the plant for nodulation was done in scale of 1-10. The nodule rating was done following the 

formula mentioned in NifTAL, (1985). 

Nodulation rating = 
(૚૙ ୶ ࡺࡾࢀࡼࡺ)ା(૞ ୶ ࡾࢀ࡯ࡺࡼࡺ)ା(૚୶ ࡺࡿࡼ)ା(૙ ୶ ࡺࡺࡼ)

ࡺ
…………(1) 

Where,  

NPTRN: Number of plants with tap root nodulation 

NPNCTR: Number of plants with nodules in secondary root but close to 

taproot 

PSN: Number of plants with scattered nodulation 

PNN: Number of plants without nodulation 

N: Total number of plants 

 

Number of Nodules: These were determined by counting the number of nodules from five 

plants and the mean value of the five plants were recorded as number of nodules per plant. 

Nodule volume: The collected nodules were immersed in previously measured volume of water 

in measuring cylinder. The volume of water displaced by nodules was considered as nodule 

volume (ml). 

Number of effective nodules: Ten representative nodules were taken from five up rooted plants 

from each plot and dissected with blade to observe their color in the center. The color score were 
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made in 1-4 scale as: 1 = white, 2 = pink, 3 = slightly dark red and 4 = deep dark red as adopted 

by Tekalign and Asgelel (1994). 

Nodule dry weight: The collected nodules were labeled and placed in perforated paper bags. 

The nodule dry weight per plant was measured after drying the collected nodules in an oven 

with a temperature of 65oC for 24-48 hrs until constant weight is attained. The average of five 

plants was taken as a nodule dry weight per plant.  

3.2.6.2. Data Collected at Early Pod Seeting Stage  

Shoot length: At late flowering stage, three plants were up rooted from each middle plots and 

the shoot length was measured. The mean from three plants was used as shoot length. 

Shoot dry weight: After measuring the shoot length, the plants were kept at 65oC in oven until 

getting constant weight. The mean value from three plants was taken as shoot dry weight per 

plant. 

3.2.6.3. Phenological Data 

Days to 50% flowering: It was determined as the number of days after seedling emergence to 

the period when 50% of the plants in a plot developed first flower. 

Days to maturity: It was taken as the number of days after seedling emergence to the period 

when 90% of the plants in the plot were ready for harvesting as revealed by change in the foliage 

and pod color and seed hardening in the pod. 

3.2.6.4. Yield and Yield Component Data Collected at Harvest 

Number of pods per plant: It was recorded from ten randomly selected plants from the net plot 

area at harvest. The average result was reported as number of pods per plant. 

Number of seeds per pod: It was determined from randomly selected five pods from the plants 

used for pod number count from the non-boarder plots. The average number of grain per pod 

was calculated by dividing the total number of grains with the number of pods per plant 
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3.2.6.5. Data Collected After Harvesting 

Above ground biomass yield (kg ha-1): At physiological maturity, plants from central row 

were manually harvested close to the ground surface. The harvested plants were sun-dried in an 

open air, weighed to determine the above ground biomass yield.  

Grain yield (Kg ha-1): It was determined after threshing and adjusting the grain yield at the 

appropriate moisture level of 10.5%. Finally, yield per plot was converted to per hectare basis.  

Hundred seeds weight (g): It was determined by weighing 25 randomly selected grains and 

weighing with sensitive balance and multiplying by four. It was reported as 100 grain-weight. 

Straw yield (Kg ha-1): It was calculated by subtracting grain yield from the corresponding total 

above ground biomass yield. 

Harvest index (HI): It was computed as the ratio of seed yield to biomass yield. 

3.2.6.6. Estemation of Total N and P uptake 

Phosphorus Uptake by seed and straw was determined from the P content of respective part after 

multiplying the seed yield and straw yield, respectively. Similarly the N uptake by seed and 

straw was determined from the N content of respective part after multiplying the seed and straw 

yield, respectively. Total N and P uptake were calculated by adding the N and P uptake of seed 

and straw. 

3.2.6.7. Estimation of Phosphorus Harvest Index and Phosphorus Use Efficiency  

3.2.6.7.1. Estimation of phosphorus harvest index and phosphorus use efficiency due to 
phosphorus application 

Phosphorus harvest index (PHI) and phosphorus Use Efficiency (PUE) were calculated with 

the help of the following formula 

PHI = 
୔ ୳୮୲ୟ୩ୣ ୧୬ ୥୰ୟ୧୬

୔ ୳୮୲ୟ୩ୣ ୧୬ ୥୰ୟ୧୬ ା ୱ୲୰ୟ୵
   (Fageria and Santos, 2002) 

PUE = 
୥୰ୟ୧୬ ୟ୬ୢ ୱ୲୰ୟ୵ ୷୧ୣ୪ୢ ୟ୲ ୦୧୥୦ୣ୰ ୔ ୪ୣ୴ୣ୪ –୥୰ୟ୧୬ ୟ୬ୢ ୱ୲୰ୟ୵ ୷୧ୣ୪ୢ ୟ୲ ୪୭୵ୣ୰ ୔ ୪ୣ୴ୣ୪

୔ ୳୮୲ୟ୩ୣ ୧୬ ୥୰ୟ୧୬ ୟ୬ୢ ୱ୲୰ୟ୵ ୟ୲ ୦୧୥୦ୣ୰ ୔ ୪ୣ୴ୣ୪ି୔ ୳୮୲ୟ୩ୣ ୧୬ ୥୰ୟ୧୬ ୟ୬ୢ ୱ୲୰ୟ୵ ୟ୲ ୪୭୵ୣ୰ ୔ ୪ୣ୴ୣ୪
 

(Fageria and Santos, 2002) 
Where  
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PHI = Phosphorus harvest Index 

PUE = Phosphorus Use efficiency 

3.2.6.7.2. Estimation of phosphorus use efficiency due to application of sulphur and zinc  

Phosphorus Use efficiency due to S and Zn fertilization was calculated with the help of the 

following formula 

PUE 

=
grain and straw yield ୟ୲ ୦୧୥୦ୣ୰ ୗ ୟ୬ୢ ୞୬ ୪ୣ୴ୣ୪ –grain and straw yield ୟ୲ ୞ୣ୰୭ ୗ ୟ୬ୢ ୞୬ ୪ୣ୴ୣ୪

୔ ୳୮୲ୟ୩ୣ ୧୬ grain and straw ୟ୲ ୦୧୥୦ୣ୰ ୗ ୟ୬ୢ ୞୬ ୪ୣ୴ୣ୪ି୔ ୳୮୲ୟ୩ୣ ୧୬ grain and straw ୟ୲ ୞ୣ୰୭ ୗ ୟ୬ୢ ୞୬ ୪ୣ୴ୣ୪
 

Where  

   PUE = Phosphorus Use efficiency 

3.2.6.8. Estimation of total P and N uptake 

3.2.7. Data Analysis 

The collected data were subjected to three factors analyses of variance (ANOVA) to evaluate 

the main and interaction effect of the factors (fertilizers and inoculation) on the selected 

parameters using SAS 9.1 statistical software. Where ever the treatment effect were significant, 

mean separation were made using the least significance (LSD) test at 5% level of probability. 

Correlation between parameters were computed when applicable according to Gomez and 

Gomez (1984). 

3.2.8. Economic Analysis 

Based on procedure described by CIMMYT (1988), economic analysis was done using partial 

budget analysis. For partial budget analysis, the variable cost of fertilizer and labor were taken 

at the time of planting and during other operations. Price of the grain and straw yield of chickpea 

were considered. The cost of Rhizobial inoculant was also considered. The average yield was 

adjusted down ward by 10 % to reflect the farmer’s field yield as described by CIMMYT (1988). 

The return was calculated as total gross return minus total variable cost. Field seed price (22.5 

Birr kg-1 seed), field price of inoculant (240 Birr ha-1), field straw price (2.00 Birr kg-1) of the 

average of one month from the time of crop harvesting and farm-get prices of zinc sulfate 

fertilizer (15.00 Birr kg -1) and market price of calcium sulfate (2.4 Birr kg-1) during planting 
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time and labor cost at (40 Birr per person per day) were used for variable cost determination. 

All input for economic analysis was based on mean value over location. 

Net benefits and costs that vary between treatments were used to calculate marginal rate of 

return to invested capital as we move from a less expensive to a more expensive treatment. 

Before conducting marginal analysis of all treatment, net benefit curve was established by 

putting variable cost at X axis and net benefit at Y axis. Regression line was added on the curve. 

Any points below the regression line were identified as dominated and hence dropped. Then 

marginal analysis of un-dominated treatment were performed to identify the one that will be 

economically attractive to farmers (CIMMYT, 1998). To draw farmers’ recommendations from 

marginal analysis in this study, 100% return to the investments was used as reasonable minimum 

acceptable rate of return.  
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4. RESULTS AND DISCUSSION 

4.1. Physico-chemical Properties of the Soils of the Study Sites  

4.1.1. Soil Physical Properties 

4.1.1.1. Texture 

Soil texture is one of the inherent soil properties less affected by management and which 

determines nutrient status, organic matter content, air circulation and water holding capacity of 

a given soil. Based on the soil analysis made, the soil texture of the entire sites was clay. This 

soil is characterized by high water holding capacity. Due to this, farmers of the study area plant 

chickpea on residual soil moisture starting from the first to last week of September. 

4.1.2. Soil chemical Properties 

4.1.2.1. pH of Soil 

The results of the selected soil physical and chemical properties are presented in Table1. 

According to the rating by Tekalign (1991), the pH of the experimental soils ranged from neutral 

(pH 7.0) to moderately alkaline (pH 7.9) (Table 1). The correlation analysis also revealed that 

there was a positive and significant (R2= 0.89) relationship between soil pH and Ex.Ca. The 

correlations with the other soil properties were non-significant (Appendix Table 8). The result 

is in agreement with the findings of Fassil and Charles (2009) who reported positive and 

significant correlation between pH and total N, EC and Ex.Na and negative correlation with Cu. 

4.1.2.2. Soil Organic Matter 

Soil OM arises from the debris of green plants, animal residues and excreta that are deposited 

on the surface and mixed to a variable extent with the mineral component (White, 1997). 

According to Tekalign (1991), the entire site had low OM content (Table 1). This is because of 

continuous cultivation without returning residue to the soil. Similarly, Fassil and Charles, (2009) 

reported that vertisols of Ethiopia had low soil OM content. Other authors also reported low soil 

OM in Vertisols (Kamara and Haque, 1987; Giday et al., 2015; Kiflu and Beyene, 2013). 
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4.1.2.3. Total Nitrogen 

Nitrogen (N) is the fourth plant nutrient taken up by plants in greatest quantity next to C, O 

and H, but it is one of the most deficient elements in the tropics for crop production (Mesfin, 

1998). It has been observed in Table 1, that total N in the study sites varied from 0.04% to 

0.07% with a mean value of 0.052%. Based on Tekalign (1991), total nitrogen content of site 

two was very low while the remaining sites was low (Table 1). This result is in line with the 

previous findings of many scholars who reported that N is one of the most deficient elements 

in the tropics for crop production (Finck and Venkateswarlu, 1982; Mengel and Kirkby, 

1987; Mesfin, 1998; Hillette et al., 2015). 

4.1.2.4. Extractable Phosphorus 

Phosphorus (P) is known as the master key to agriculture next to N because lack of available 

P in the soils limits the growth of both cultivated and uncultivated plants (Foth and Ellis, 

1997). Olsen extractable P content of the soil in the experimental sites ranged from 0.8 to 

17.1 mg kg-1 with a mean value of 7.42 mg kg-1 (Table 1). According to Landon (1991), the 

available P was rated as low for sites 1 and 3, medium for sites 4 and 5 and high for site 2. 

The source of variation across farms may be due to the different history of fertilizer usage 

(especially DAP) and the inherent soil variability across farms.  

4.1.2.5. Available Sulfur 

Sulfur is an important secondary nutrient which is responsible for synthesis of cysteine, 

methionine, chlorophyll, vitamins, metabolism of carbohydrates, oil and protein contents 

(Sarkar et al., 2002; Singh et al., 2006). According to Lewis (1999) S content of all study sites 

ranged from very low to low (Table1). The low S was also expected because the experimental 

soil had low organic matter content (source of about 95% of S) indicating that its potential to 

supply S to plant growth through mineralization is low. EthioSIS soil fertility map showed that 

Sulfur content of almost all soils of Gonder Zuria woreda is in very low to low range (EthoSIS, 

2016). Similarly, Lelago et al. (2016) reported that among soil samples collected from Kacha 

Bira woreda, 88.43%, 10.2% and 1.37% were very low, low and optimum in S content 

respectively. Moreover, 85.1% of soils of Damboya were very low in S content while the 
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remaining 14.19% was low in S content. Other authors also reported deficiency in S in Vertisols 

(Hillette et al., 2015; Fanuel, 2015; Habtamu et al., 2014) 

4.1.2.6. Cation Exchange Capacity 

The cation exchange capacity (CEC) of soils is defined as the capacity of soils to adsorb and 

exchange cations (Brady and Weil, 2002). According to the rating developed by Hazelton 

and Murphy (2007), the soils of the investigated sites had very high CEC (Table 1). The 

result is within the range reported by Berhanu (1985), who found CEC of 35-70 meq 100 g-

1 soil for nearly all the Vertisols of Ethiopia. The very high value of CEC is mainly due to 

the high clay content of all sites. CEC of soil is an important parameter of soil because it 

gives an indication of the type of clay minerals present in the soil, its capacity to retain 

nutrients against leaching and assessing their fertility and environmental behavior. Generally, 

the chemical activity of the soil depends on its CEC. 

4.1.2.7. Exchangeable Bases  

According to Fassil and Charles (2009), in neutral Vertisols, the exchangeable sites are occupied 

mainly by calcium (Ca) and magnesium (Mg) and to a lesser extent by potassium (K) and 

sodium (Na). The present study (Table1) also confirmed that 64.9%, 60.8%, 75.9%, 67.2%, 

61.9% of the exchangeable sites of the study sites 1, 2, 3, 4 and 5 were occupied by Ca 

respectively, indicating that Ca is the dominate cation in the cation exchange sites. Similar result 

is reported by Hillette et al. (20015) for Vertisols cropping system of central highlands of 

Ethiopia. Next to Ca, the exchangeable sites were occupied by Mg, K and Na in all sites. 

Similarly, Hillette et al. (2015) found that 77% of the exchangeable site were occupied by Ca++ 

followed by Mg++ (19%) and K+ (3.2%). Exchangeable K in the study area ranged from 0.6 

cmol (+) K kg-1 in site 1 to 1.1 cmol (+) K kg-1 in site 2. According to Berhanu (1985) all sites 

had high exchangeable K. This result is also in agreement with different former findings 

(Beyene, 1982; Kamara et al., 1989; Lemma and Smit, 2008; Hillette et al., 2015). 

Exchangeable Ca varied between 39.2 cmol (+) Ca kg-1 in site 5 to 56.7 cmol (+) Ca kg-1 in site 

3. According to Hazelton and Murphy (2007) all sites had very high exchangeable Ca. Similarly, 

research in different part of Ethiopia indicated that Vertisols have high Ca content in their 
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exchange sites (Beyene, 1982; Kamara et al., 1989; Lemma and Smit, 2008; Fassil and Charles, 

2009; Hillette et al., 2015).  

Exchangeable Mg in the study sites varied from 16.9 cmol (+) Mg kg-1 in site 3 to 27.1 cmol (+) 

Mg kg-1 in site 1. Based on the rating developed by Hazelton and Murphy (2007) all sites were 

very high in their exchangeable Mg content. Similarly, Hillette et al. (2015) reported that all 

samples collected from 10 locations having clayey texture and neutral to slightly alkaline pH 

(7.2-7.9) had high exchangeable Mg+ which is above the critical level (1-3 cmol kg-1) according 

to Hazelton and Murphy (2007). 

4.1.2.8. Zinc 

Zinc plays important role in plant metabolism and influences hydrogenase and carbonic 

anhydrase activities, stabilize ribosomal fractions and help in the synthesis of cytochrome 

(Tisdale et al., 1985). Zn deficiency is widespread in many of the world's major chickpea-

growing areas (Cakmak et al., 1995). The authors reported that half of the samples collected 

from 25 countries found to be very low in Zn content. According to Ahlawat (2007) chickpea is 

more sensitive to Zn deficiency. Accordingly, the DTPA extractable Zn content in the soil 

ranged from 0.4 mg kg-1 (site 5) to 0.6 mg kg-1 (site 2) (Table 1). All the soil analysis results 

were lower than the mean value (0.9 mg kg-1) reported for Vertisols by Asgelil et al. (2007). 

But similar to the mean value of available Zn (0.5 mg kg-1) reported by Yifru and Mesfin (2013) 

for Vertisols of the central highlands of Ethiopia. According to Lindsay and Norvell (1978), all 

sites had below the critical value of 1.0 mg kg-1. This could be due to the fact that Zn has a 

tendency of being adsorbed on clay sized particles (Alloway, 2008). Previous research also 

indicated that in neutral to alkaline soils where chickpea is usually grown, Zn deficiency can 

often be encountered (Roy et al., 2006). The result is also in agreement with Yifru and Mesfin 

(2013). Asgelil et al. (2007) also reported that 78.4% of the soil samples collected from Vertisols 

of Ethiopia were deficient in Zn. Other research findings also confirmed deficiency of Zn in 

Vertisols of Ethiopia (Bereket et al., 2011; EthoSIS, 2016). 

4.1.2.9. Iron 

The DTPA extractable Fe content in the soil varied from 8.3 mg kg-1 to 20.5 mg kg-1 (Table 1). 

Based on Lindsay and Norvell (1978), all study sites had adequate amount of available Fe above 
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the critical value. In conformity with the present study Hillette et al. (2015) found that soil 

samples collected from Vertisols cropping systems of central high lands of Ethiopia have 

sufficient level of available Fe considering 5 mg kg-1 AB-DTPA extractable Fe as critical. 

4.1.2.10. Manganese 

The DTPA extractable Mn content varied from 11.3 mg kg-1 to 24.5 mg kg-1 (Table 1 and 

Figure18). All sites were above the critical value of DTPA extractable Mn (1 mg kg-1) developed 

by Lindsay and Norvell (1978). Similarly, adequacy of Mn was reported by Hillette et al. (2015), 

Itanna (1992) and Ethosis, (2016) on vertisols of Ethiopia. 

4.1.2.11. Copper  

The DTPA extractable Cu content varied from 1.5 mg kg-1 to 2.9 mg kg-1 (Table 1). All sites 

are above the critical value (0.2 mg kg-1) developed for DTPA extractable Cu (Lindsay and 

Norvell, 1978). Yifru and Mesfin (2013) also found that all soil samples collected from Vertisols 

of the central highlands of Ethiopia (Minjar-Shenkora, Ada, Gimbichu, Akaki and Lume) had 

sufficient copper content. Similarly, sufficiency of Cu have been reported by Yifru and Mesfin 

(2013), Hillette et al. (2015) and EthioSIS (2016). In contrary to the above findings, Asgelil et 

al. (2007) reported that 51.6% of the soil samples collected from Vertisols of Ethiopia were 

deficient in Cu using 2 mg kg-1 as critical level.  
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Table 1. Physico-chemical properties of the soil before planting 
Parameters Before planting 

Sites Mean 
1/Degola+ 2/Degola+ 3/Tsion* 4/Denzaz+ 5/Denzaz* 

pH (1:2.5 H2O) 7.3 7.0 7.9 7.6 7.0 7.4 
Organic Carbon (%) 0.61 0.61 0.73 0.68 0.74 0.67 
Organic matter (%) 1.05 1.05 1.26 1.17 1.27 1.16 
Total N (%) 0.05 0.04 0.07 0.05 0.05 0.052 
Available P (mg kg-1), 
Olsen 

0.8 17.1 2.8 9.7 6.7 7.42 

Available S (mg kg-1), 7.6 8.0 10.5 5.4 7.6 7.8 
Ec (dS/m) 0.09 0.07 0.13 0.09 0.09 0.1 
CEC(cmo (+) kg-1 soil) 62.6 57.6 60.1 60.1 53.1 58.7 
Na+ (cmo(+) kg-1 soil) 0.2 0.2 0.3 0.2 0.2 0.2 
K+ (cmo(+) kg-1 soil) 0.6 1.1 0.8 0.9 0.8 0.8 
Ca2+ (cmo(+) kg-1 soil) 51.7 41.4 56.7 48.6 39.2 47.5 
Mg2+ (cmo(+) kg-1 soil) 27.1 25.4 16.9 22.6 23.1 23.0 
Fe (mg kg-1 soil) 8.4 20.5 8.3 10.8 16.7 12.9 
Cu (mg kg-1 soil) 2.7 2.5 1.5 2.9 2.5 2.4 
Mn (mg kg-1 soil) 24.5 18.1 11.3 15.5 24.2 18.7 
Zn (mg kg-1 soil) 0.5 0.6 0.5 0.5 0.4 0.5 
Sand (%) 10 10 12 12 8  
Silt (%) 20 18 16 22 18  
Clay (%) 70 72 72 66 74  
Textural class Clay Clay Clay Clay Clay  
+=indicates farmers field on which soil samples was collected for identification of limited plant nutrients, * =indicates 
farmers field on which the experiment conducted 
 

4.2. Nodulation Related Data 

4.2.1. Native Rhizobia Population 

The MPN test revealed that population of the indigenous rhizobia in Tsion and Denzaz was 

found ranged between 17 x 10-1 to low (<10 x 10-1 rhizobia cells g−1 soil) though the districts 

(Woredas) have many years of experience in chickpea production (IFPRI, 2015). This indicates 

the population is not abundant enough to initiate optimum nodulation and provide sufficient 

amount of N through BNF (Slattery et al., 2004) especially in Tsion site. This is because of the 

low organic matter content of a soil since organic matter is reservoir of metabolizable energy 

for microbial and faunal activity and affects stabilization of enzymatic activity (Haynes, 2008). 

Slattery et al. (2004) reported that only 7% out of 50 samples collected had sufficient effective 

resident populations of Mesorhizobium ciceri nodulating chickpea. Rupela et al. (1987) also 

indicated that chickpea Rhizobial populations collected from soil samples from research stations 
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and farmers' fields in different geographic regions of India had ranging from <10 to > 

104 rhizobia g−1 soil and indicated that their population vary with season, depth and cropping 

pattern.  

4.2.2. Total Numbers of Nodules Per Plant 

The main effect of inoculation was found statistically significant (P ≤ 0.01) on nodule number 

at Tsion and Denzaz site. Similarly, the main effect of S and Zn was found significant at Denzaz 

and mean value combined over locations (Appendix Table 1). The analysis result also revealed 

that the two way interaction of S application with inoculation and Zn were found statistically 

significant both locations and mean value combined. Moreover, the two way interaction of 

inoculation and Zn was also significant (P ≤ 0.05) at Tsion site (Appendix Table 1). 

The three way interaction of Rhizobium inoculation, S and Zn was found to be significant at 

both locations and their means (Table 2). At Tsion site, the highest nodule number (15.7) was 

obtained from the combined application of 15 kg S and 1.5 kg Zn ha-1 while the lowest (10.9) 

was from Rhizobium inoculation and 1.5 kg Zn ha-1. At Denzaz site, the highest nodule number 

(15.8) was obtained from the combined application of Rhizobium inoculation, 15 kg S and 1.5 

kg Zn ha-1 whereas the lowest (9.3) was from the control check as well as 15 kg S alone. The 

highest (15.3) mean nodule number over locations was obtained from Rhizobium inoculation 

integrated with 15 kg S and 1.5 kg Zn ha-1 which resulted in 37.8% increment over the control 

check. Even if there was no consistent increase, the increase of number of root nodules with 

increasing levels of Zn might be due to the fact that Zn helps to improve more nodulation and 

leghaemoglobin formation (Brady and Well, 2009). Proper nutrition of plants with S increases 

the amount of glucose flowering to the roots and ATP biosynthesis (Pacyna et al., 2006). In 

conformity with the present finding, Srivastava et al. (2006) reported that the combined 

application of Rhizobium inoculation with 30 kg S and 5 kg Zn ha-1 significantly increased 

number of nodules plant-1 by 18%, 14.15% and 13% respectively compared with the control. 

This is mainly due to creation of favorable soil ecological condition for the growth and 

development of nitrogen fixing bacteria in gummer green gram. In addition, similar result were 

also concluded by Naidu and Ram (1995), Naidu et al. (1998), Awlad et al. (2003), Zhao et al. 

(2008), Abdalla et al. (2011), Muhammad et al. (2013), Surendra and Katiyar (2013), Kumar et 
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al. (2014), Jadeja et al. (2016), Zafar et al. (2014), Sharifi (2016), Sipai et al. (2016), and Das 

et al. (2016). 

Table 2. Number of nodules per plant of chickpea as affected by Rhizobium inoculation, S and 
Zn fertilizer rates 

 Treatment 
Number of nodules per plant (no) 

Tsion Denzaz Mean 
    Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 13.4cde 10.9g 10.5cd 10.5bcd 11.9cde 10.7e 
S15 11.3fg 14.7abc 11.1bc 15.8a 11.2cde 15.3a 
S30 14bcd 11.9efg 10.7bcd 11.9bc 12.3cd 11.9cde 

R0 
S0 13de 15.6ab 9.3d 12.1b 11.1de 13.8b 
S15 12.9def 15.7a 9.3d 11.7bc 11.2cde 13.7b 
S30 14bcd 12.4defg 11.1bc 11.4bc 12.5bc 11.9cde 

LSD0.05 1.6046 1.5963 1.3135 
CV(%) 7.12 8.34 6.31 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, CV = Coefficient of variation 

4.2.3. Nodule Volume Per Plant 

Nodule volume is one of the parameters in assessing the performance of nodules in accordance 

with their ability to fix atmospheric nitrogen. In Appendix Table 1, the nodule volume which 

were obtained from both locations and mean values were significantly influenced by the main 

effect of inoculation, S and Zn and the two way interaction of S and Zn at P≤ 0.05. At Tsion and 

mean value, the two way interaction of inoculation with S and Zn were found significant. 

Moreover, this trait at both locations and its mean value over locations were significantly (P ≤ 

0.05) influenced by the three way interaction (Table 3). At both locations, the highest (0.97 and 

1.6 ml plant-1) and lowest (0.38 and 0.6 ml plant-1) nodule volume was observed when 

Rhizobium inoculation integrated with 15 kg S ha-1 and 1.5 kg Zn ha-1and combined application 

of Rhizobium inoculation and 1.5 kg Zn ha-1, respectively. Indicating S application increase 

nodule volume (Table 3). 

The highest mean value of nodule volume (1.3 ml plant-1) over locations was obtained from 

combined application of Rhizobium inoculation with 15 kg S ha-1and 1.5 kg Zn ha-1 which 

resulted in 116.7% increase over the control check (Table 13). This increment in nodule volume 
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might have been because of synergistic effects between Rhizobium inoculation, S and Zn. 

Similar to the present study, Habtegebrial et al. (2007), Alemu (2009), Varin et al. (2010) and 

Workneh et al. (2012) have also observed Rhizobium inoculation, S and Zn application increase 

nodule volume of faba bean, fenugreek, white clover and soybean plants, respectively. 

Table 3. Nodule volume of chickpea as affected by Rhizobium inoculation, S and Zn fertilizer 
rates 

 Treatment 
Nodule volume (ml plant-1) 

Tsion Denzaz Mean 
    Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 0.7bc 0.38e 1.1bc 0.6g 0.9bc 0.5f 
S15 0.52d 0.97a 0.8def 1.6a 0.7de 1.3a 
S30 0.79b 0.67c 1.2b 1.1bcd 1b 0.9bc 

R0 
S0 0.48de 0.65c 0.7fg 1fg 0.6ef 0.8cd 
S15 0.5d 0.72bc 0.7efg 1.1bc 0.6ef 0.9bc 
S30 0.75bc 0.64c 1.2bc 1bcd 1bc 0.8cd 

LSD0.05 0.11 0.238 0.15 
CV(%) 10.19 14 10.75 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn ha-

1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, CV = Coefficient of variation 

4.2.4. Nodule Dry Weight per Plant 

In Appendix Table 1, nodule dry weight data which were obtained from both locations and its 

mean value was significantly affected by the main effects of inoculation and S and its two way 

interaction between them at P ≤ 0.01. Similarly, the main effect of Zn was found significant at 

Tsion and Denzaz site at P ≤ 0.01. The analysis of variance also showed that the two way 

interaction of S with Zn was significantly influenced this trait at both locations and mean value 

combined over locations at P ≤ 0.01 The interaction of the three factors also significantly (P ≤ 

0.01) influenced the nodule dry weight at both sites as well as their mean value over locations 

(Table 4). 

At Tsion site, the highest (58.7 mg plant-1) and lowest (29.3 mg plant-1) nodule dry weight values 

were obtained in response to Rhizobium inoculation when integrated with 30 kg S ha-1 and 1.5 

kg Zn ha-1 and Rhizobium inoculation alone, respectively. At Denzaz site, the highest (46.7 mg 

plant-1) and lowest (14.7 mg plant-1) nodule dry weight were obtained from Rhizobium 

inoculation when integrated 15 kg S ha-1 and application of 1.5 kg Zn ha-1 alone, respectively. 
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The highest (48.5 mg plant-1) mean value of nodule dry weight combined over locations was 

found when Rhizobium inoculation was integrated with 15 kg S ha-1 which resulted in 22.2% 

increase over the control check (Table 4). This is probably due to the positive role of S in 

promoting nodulation and enhancement of photosynthesis in plants. Consistent with this idea, 

Scherer (2008) has noted that root and nodule development of legumes root is promoted by S 

fertilization. Scherer and Lange (1996) also reported that S deficiency decreased N demand, 

which in turn decreased the number and mass of nodules. In contrast, an increase in N demand 

resulted in higher number and mass of nodules. Similarly, different authors reported that the dry 

weight of nodules increased with Rhizobium inoculation (Kantar et al., 2003; Habtegebrial et 

al., 2007; Rokhzadi and Toashih, 2011; Abdalla et al., 2011; Birhanu and Pant, 2012; Workneh 

et al., 2012; Jay et al., 2012; Srinivasulu et al., 2015; Sharifi, 2016) and S application (Yadav, 

2011; Rakesh et al., 2012; Sipai et al., 2016). 

Table 4. Nodule dry weight of chickpea as affected by Rhizobium inoculation, S and Zn 
fertilizer rates 

 Treatment 
Nodule dry weight(mg plant-1) 

Tsion Denzaz Mean 
    Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 29.3f 44d 16hi 31.3b 22.7g 37.7c 
S15 50.3bc 36.3e 46.7a 22eg 48.5a 29.2ef 
S30 37.3e 58.7a 26def 30.7bc 31.7de 44.7b 

R0 
S0 52b 50.3bc 27.3bcd 14.7i 39.7c 32.5d 
S15 47cd 37.3e 26.7cde 19.3gh 36.8c 28.3f 
S30 39e 47.7bcd 22.7efg 28bcd 30.8def 37.8c 

LSD0.05 4.38 4.57 3.03 
CV(%) 5.86 10.39 5.11 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, CV = Coefficient of variation 

4.2.5. Effective Nodule 

Many authors have reported that legume nodules having dark pink or red colors due to presence 

of leghemoglobin are an indication for effectiveness of the rhizobial strains used, which is well 

correlated with nitrogen fixation (Adjei and Chambeiss, 2002; Butler and Evers, 2004). The 

effectiveness of nodules in its ability to fix atmospheric nitrogen in response to inoculation, S 

and Zn was assessed using nodule color. In Appendix Table 2, neither the main effect of all 
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factors and nor the two way interaction between them was found significant. The result also 

indicated that all levels of inoculation, S and Zn were invariably slightly dark red.  

The three way interaction between inoculations, S and Zn was presented in Table 5. Nodule 

color was found to range from pink to slightly dark red. The color observed in the inoculated 

and un-inoculated plots was comparable to each other indicating the non-effectiveness of 

inoculated rhizobia over the native rhizobia.  

Table 5. Effectiveness of nodules of chickpea as affected by Rhizobium inoculation, S and Zn 
fertilizer rates 

 Treatment 
Effectiveness of nodules 

Tsion Denzaz Mean 
    Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 2.6ab 2.6ab 2.6abc 2.8ab 2.6abcd 2.7abc 
S15 2.7ab 2.4c 2.9ab 2.7abc 2.8ab 2.5cd 
S30 2.6abc 2.7ab 2.5bc 2.7abc 2.6bcd 2.7abcd 

R0 
S0 2.8a 2.7ab 2.8ab 2.7abc 2.8a 2.7abcd 
S15 2.5bc 2.7ab 2.4c 2.8ab 2.5d 2.8abc 
S30 2.6ab 2.7ab 2.6abc 2.9a 2.6abcd 2.8a 

LSD0.05 0.1967 0.325 0.23 
CV(%) 4.41 7.12 5.1 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, CV = Coefficient of variation 

4.2.6. Nodulation Rating  

Nodulation rating was significantly influenced by the main effect inoculation and S at both 

locations (Appendix Table 2). The two way interaction between inoculation and Zn was found 

significant at both locations and mean value combined over location. The two way interaction 

between inoculation and S also found significant (P ≤ 0.05) at Denzaz and mean value combined 

over locations at P ≤ 0.01 (Appendix Table 2). Appendix Table 2 also revealed that the two way 

interaction of S and Zn was found significant at Tsion and mean value combined over locations. 

Moreover, this trait and its mean value combined over locations were significantly influenced 

by the three way interaction of the three factors at P ≤ 0.05 (Table 6). 

At Tsion site, the highest (6.5) and lowest (3.5) nodulation rating were recorded with combined 

application of Rhizobium inoculation with 30 kg S ha-1 and 1.5 kg Zn ha-1 and 30 kg S ha-1 alone, 

respectively (Table 6). At Denzaz, the highest (7) and lowest (2.7) nodulation rating was 
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recorded from Rhizobium inoculation when integrated with 30 kg S ha-1 and combined 

application of 15 kg S ha-1 with 1.5 kg Zn ha-1, respectively. The present study also found that, 

the highest (6.7) mean nodulation rating over locations was obtained with Rhizobium inoculation 

when integrated with 30 kg S ha-1 which resulted in 86.1% increase over the control check (Table 

16). This is probably due to the availability of optimal level of nutrients for the production of 

effective and large nodules on the tap root system. In consistent with this suggestion, Jennings 

(2004) reported that effective nitrogen fixing are often found when the nodules are red and found 

in the primary root. In general, the result revealed that regardless of S and Zn application rates, 

the superior nodulation rating of chickpea was gained from Rhizobium inoculation over un-

inoculated treatment (Table 6).  

Table 6. Nodulation rating of chickpea as affected by Rhizobium inoculation, S and Zn 
fertilizer rates 

 Treatment 
Nodulation Rating 

Tsion Denzaz Mean 
    Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 6b 4.6d 5.7c 4.6d 5.9c 4.6d 
S15 6b 5.4c 5.8c 6.4b 5.9c 5.9c 
S30 6.4ab 6.5a 7a 6.4b 6.7a 6.5b 

R0 
S0 3.8e 3.8e 3.4f 4.6d 3.6g 4.2f 
S15 4.3d 3.6e 3.8e 2.7g 4f 3.1h 
S30 3.5e 5.9b 3.9e 4.6d 3.7g 5.3d 

LSD0.05 0.4406 0.2772 0.2086 
CV(%) 5.22 3.33 2.49 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference,  CV Coefficient of variation 

4.3. Growth Parameters 

4.3.1. Plant Height 

The plant height which was obtained from both locations and its mean values combined over 

location was significantly affected by the main effect of S application and its interaction with 

inoculation (at P≤ 0.01) (Appendix Table 2 and Table 7). Moreover, this trait and its mean values 

was significantly influenced by the two way interaction of S and Zn at Denzaz and mean value 

combined over location. The analysis of variance also showed that the main effect of Zn was 

found to be significant at Tsion and mean value combined over locations (Table 7). In general, 
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the result revealed that plant height was increased with increasing S rate when the plant was 

inoculated (only at Denzaz) and fertilized with 1.5 kg Zn ha-1 both at Tsion site and mean value 

combined over locations (Table 7). The highest plant height at both locations and mean value 

combined over locations were observed with application of 30 kg S ha-1. Sulfur is also a major 

component of ferreoxin in chloroplast which is relevant for the proper photosynthetic activity 

(Fukuyama, 2004). Hussain et al. (2011) reported that application of 30 kg S ha-1 on soybean 

plants increase plant height by 14% compared with the control. At Tsion and mean value 

combined over locations, the highest plant height was observed with application of 1.5 kg Zn 

ha-1 (Table 7). This might be attributed to the fact that Zn can activate certain enzymes which 

are responsible for cell division and elongation which could lead to increased plant height 

(Nadergoli et al., 2011). At Denzaz site rhizobium inoculation resulted in highest plant height 

while at Denzaz the highest plant height was obtained from un inoculated treatment. Similarly, 

previous research also confirmed that plant height was increased with S application (Nasreen 

and Farid, 2006; Ram and Katiyar, 2013; Sipai et al., 2016) and Zn application (Nadergoli et 

al., 2011; Dashadi et al., 2013; Usman et al., 2014; Kayan et al., 2015).  

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 



41 
 

 

Table 7. Effect of Rhizobium, S and Zn fertilizer rates on plant height of chickpea 
 PH 

Tsion Denzaz Mean 
Inoculation 

R0 39.6a 32.7b 36.1 
R1 38.9b 33.3a 36.1 

LSD(0.05) 0.44 0.41 ns 
Levels of S 

S0 38.2b 32.9b 35.6c 
S15 39.6a 32c 35.8b 
S30 39.9a 34.1a 37a 

LSD(0.05) 53.4 0.51 0.58 
Levels of Zn 

Zn0 38.8a 32.9 36.2a 
Zn1.5 39.6b 33.1 36b 

LSD(0.05) 0.44 ns 0.31 
I*S ** ** ** 

I*Zn ns ns ns 
S*Zn ns ** ** 

I*S*Zn ns ns ns 
CV(%) 1.61 1.82 1.25 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated , S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, CV = Coefficient of variation 

4.3.2. Root Length 

The main effect of inoculation and S were significantly (P ≤ 0.05) affected the root length at 

both location and mean value combined over location (Appendix Table 3). The two way 

interaction of inoculation and S was found to be significant at Denzaz and Mean value combined 

over location. At Tsion and mean value combined over location, the two way interaction 

between inoculation and Zn was significantly influenced this trait. The analysis of variance also 

showed that the two way interaction between S and Zn was significantly influenced this trait at 

Tsion and Denzaz. Moreover, this trait was significantly influenced by the three way interaction. 

At Tsion site, the highest (21.1 cm) and lowest (17 cm) root lengths were obtained from the 

combination of Rhizobium, 15 kg S and 1.5 kg Zn ha-1 and from the combination of Rhizobium, 

30 kg S and 1.5 kg Zn ha-1 (Table 8). Previous finding also confirmed that Rhizobium inoculation 

(Bhuiyan et al., 2008; Ali et al., 2008; Nishita and Joshi, 2010), S (Varin et al., 2010; Khan and 

Mazid, 2011) and Zn application (Khan, 1998; Yohannes et al., 2015) significantly increased 

root length. Moreover, regardless of inoculation and Zn application, application of S up to 15 
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kg S ha-1 resulted in increased root length. Beyond this rate further increase in root length was 

not observed. This may be mainly because of the development of acidity environment in 

immediate vicinity of root zone due to high S rate application and this may retard root growth 

(Rengel, 2003). Similarly, Zhao et al. (2008) observed that basal application of 30 mg kg-1 

elemental S increase root length compared with the control check on soybean but it decreases 

root length compared with 15 mg kg-1 S. 

Table 8. Root length of chickpea as affected by Rhizobium, S and Zn fertilizer rates 
 
Treatment 

Root length (cm) 
Mean 

Tsion Denzaz 
Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 19.9ab 17.6de 16.3cd 17.6ab 18.1bc 17.6cdef 
S15 19.7ab 21.1a 18.0a 17.3abc 18.8ab 19.2a 
S30 19.1bc 17e 16.4bcd 16.1cd 17.7cde 16.5fg 

R0 
S0 17.4de 18.1cde 16.5bcd 16.9abcd 16.9defg 17.5cdef 
S15 18.7bcd 19.2bc 15.8de 14.2f 17.2cdef 16.7efg 
S30 17.5de 18.5bcde 14.5ef 17.0abc 16g 17.8bcd 

LSD(0.05) 1.517 1.259 3.57 
CV (%) 4.77 4.54 1.066 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, I 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, NS = Not significant at P ≤ 0.05, CV = Coefficient 
of variation 

4.3.3. Shoot Dry Weight 

The main effect of S application and its interaction with inoculation and Zn significantly 

influenced shoot dry weight at Denzaz and mean value combined over locations but not at Tsion 

at P ≤ 0.05 (Appendix Table 3). The two way interaction between inoculation with S and Zn 

also found significant at Denzaz and mean value combined over locations. In general, regardless 

of the treatments applied, the data showed that shoot dry weight at Tsion was higher than those 

obtained at Denzaz (Table 9). Higher moisture availability at the time of sowing at Tsion site 

could result in better germination and ultimately good crop stand and higher shoot dry weight. 

In general, shoot dry weight exhibited an increasing trend with S application rates when the 

plant was inoculated and fertilized with 1.5 kg Zn ha-1. 

At Denzaz site, significantly the highest (6.5 g plant-1) shoot dry weight was found when 30 kg 

S ha-1 and 1.5 kg Zn ha-1 was applied in combination. The highest mean value of shoot dry 
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weight over locations (7 g plant-1) was obtained from combined application of 30 kg S ha-1 and 

1.5 kg Zn ha-1 which resulted in 40% increase over the control check. This might be due to the 

fact that Zn activates several enzymes such as auxin which is relevant in plant cell division and 

elongation (Marschner, 1995; Cakmak et al., 1989) and thus, leads to enhance dry matter 

production of the plants. Hussain et al. (2011) reported that application of 30 kg S ha-1 on 

soybean plants increase dry matter yield by 26% compared with the control. Valencino et al. 

(2010) also reported that application of 8 mg Zn pot-1 increse shoot dry weight of chickpea by 

11.4% over the control. In line with this finding, several authors also reported the positive effect 

of S and Zn applications in shoot dry weight (Hussain et al., 2011; Singh et al., 2012; Banik and 

Sengupta, 2012; Kesare, 2014). 

Table 9. Shoot dry weight of chickpea as affected by Rhizobium inoculation, S and Zn 
fertilizer rates 

 
Treatment 

Shoot dry weight(g plant-1) 
Mean 

Tsion Denzaz 
Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 6.5 8.0 3.9e 4.9bc 5.2de 5.7cde 
S15 7.7 7.0 5bc 4.3cde 6.4abc 6.4bc 
S30 7.3 7.2 6.4a 4.7bcd 6.8ab 5.9cde 

R0 
S0 6.3 7.4 3.7ef 4.9bc 5e 6.1cd 
S15 6.4 8.1 4de 3.1f 5.2de 5.6cde 
S30 7.4 7.6 5.2b 6.5a 6.3bc 7a 

LSD0.05 NS 0.756 0.811 
CV(%) 9.69 9.49 7.99 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, NS = Not significant at P ≤ 0.05, CV = Coefficient 
of variation 

4.3.4. Root Dry Weight  

The main effect of S application and its interaction with Zn was significantly influenced root 

dry weight at both sites at P ≤ 0.05. The result also found that at Tsion and on mean value of 

this trait over locations was significantly influenced by the main effect of inoculation and its 

interaction with Zn (Appendix Table 3). At Denzaz and mean value of this trait also influenced 

by the main effect Zn and its interaction with inoculation and S (Appendix Table 3). Moreover, 

the three way interaction were significantly (P ≤ 0.05) affected the root dry weight at both 

locations and their mean value over locations. At Tsion site, the highest root dry weight (0.71 g 
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plant-1) was recorded with combined application of 15 kg S ha-1 and 1.5 kg Zn ha-1 under un 

inoculated condition while the highest value (0.54 g plant-1) at Denzaz site were found from 30 

kg S ha-1 applied with 1.5 kg Zn ha-1 under un inoculated condition (Table 10). Combined 

application of Rhizobium inoculation and 30 kg S ha-1 resulted in the maximum mean root dry 

weight (0.59 g plant-1). Similarly, root dry weight increase due to Rhizobium inoculation 

(Abdalla et al., 2011; Workneh et al., 2012; Jay et al., 2012), and S application (Besharati and 

Rastin, 1999; Zhao et al., 2008; Varin et al., 2010) have been reported. 

Table 10. Root dry weight of chickpea as affected by Rhizobium inoculation, S and Zn 
fertilizer rates 
 
Treatment 

Root dry weight (g plant-1) 
Mean 

Tsion Denzaz 
Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 0.51de 0.63b 0.39e 0.49ab 0.45ef 0.56ab 
S15 0.67ab 0.58c 0.45bc 0.41de 0.56ab 0.5c 
S30 0.67ab 0.5ef 0.51ab 0.4e 0.59a 0.45ef 

R0 
S0 0.55cd 0.55cde 0.38e 0.53a 0.47de 0.56ab 
S15 0.46f 0.71a 0.39e 0.3f 0.43f 0.5c 
S30 0.54cd 0.58cd 0.43de 0.54a 0.49cd 0.57ab 

LSD0.05 0.0477 0.0456 0.0308 
CV(%) 4.84 6.23 3.57 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, CV = Coefficient of variation 

4.4. Yield Related Traits 

4.4.1. Number of Primary Branches 

Number of primary branches was responded significantly to the main effect of S application and 

its interaction with inoculation and Zn at both locations and at Denzaz site respectively at P ≤ 

0.05 (Appendix Table 4). The analysis of variance also showed that the main effect of Zn 

application (at Tsion site) and its interaction with inoculation was significantly influenced this 

trait at both locations and mean value combined over locations. Moreover, this trait by location 

and its mean value over locations were significantly influenced by the three way interactions at 

P ≤ 0.05 (Table 11).  

Even though it is not consistent, this observation suggests number of primary branches exhibited 

an increased with increasing the rate of S and Zn (Table 11). At Tsion site, the highest (4.5) and 
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lowest (3.4) primary branches were obtained from sole application of 30 kg S ha-1 and 1.5 kg 

Zn ha-1, respectively. The highest (3.4) and lowest (2.1) number of primary branches at Denzaz 

site was obtained in response to combined application of Rhizobium inoculation and 30 kg S ha-

1 as well as with sole application of S at 15 kg ha-1 and with the control treatment, respectively 

(Table 11). 

The highest mean value of primary branches over locations (3.8) was obtained from combined 

application of Rhizobium inoculation and 30 kg S ha-1 which resulted in 31.03% increase over 

the control check (Table 11). The increase in primary branches due to Rhizobial inoculation was 

explained by the increasing supply of N through BNF. Application of S has vital role in the 

primary and secondary metabolism as it is a constituent of various organic compounds (Hitsuda 

et al., 2004; Naeve and Shibles, 2005). Similarly, the number of primary branches increased due 

to Rhizobium inoculation and S application (Sharma and Room, 1997; Togay et al., 2008; 

Namvar et al., 2011; Ram and Katiyar, 2013; Kesare, 2014; Jadeja et al., 2016; Das et al., 2016) 

have been reported. 

Table 11. Number of primary branches of chickpea as affected by Rhizobium inoculation, S 
and Zn fertilizer rates 

 
Treatment 

Number of primary branches (no plant-1) 
Mean 

Tsion Denzaz 

Zn0 Zn1.5 Zn0 Zn1.5 Zn0 
Zn1.

5 

R1 
S0 3.5e 3.8bcde 2.7cdef 2.5f 3ef 3.1def 
S15 4.3abc 4.2abc 2.5f 2.7def 3.2cde 3.5b 
S30 3.8bcde 3.7de 3.4a 2.9bcde 3.8a 3.4bc 

R0 
S0 3.8cde 3.4e 2.1g 3bcd 2.9f 3.4bc 
S15 3.9bcd 3.7de 3.4a 2.6ef 3.4bc 3.3bcd 
S30 4.5a 3.5e 3bc 3.1b 3.3bcd 3.7a 

LSD0.05 0.434 0.32 0.25 
CV(%) 6.62 6.7 4.4 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, CV = Coefficient of variation 

4.4.2. Number of Pods Per plant 

Number of pods per plant at both locations was significantly affected by the main effect of S 

and Zn at P ≤ 0.01 (Appendix Table 4). At Tsion and Denzaz site, the two way interaction 

between inoculation with S and Zn was found significant (P ≤ 0.05) respectively. More over at 
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Denzaz and mean value combined over locations, the two way interaction S and Zn was found 

significant. The analysis of variance also revealed that this trait and its mean value over locations 

were significantly influenced by three way interactions (Table 12). 

At Tsion site, significantly the highest number of pod (51.3) was obtained from combined 

application of Rhizobium inoculation with 15 kg S ha-1 and 1.5 kg Zn ha-1. But it is the same as 

combined application of 30 kg and 1.5 kg Zn ha-1.  While at Denzaz site the highest value (47.7) 

was found from combined application of Rhizobium inoculation with 30 kg S ha-1. Regardless 

of locations, the lowest number of pod was obtained from Rhizobium inoculation alone. The 

combined analysis over locations indicated that the highest (48.3) mean number of pod was 

obtained from combined application of Rhizobium inoculation and 30 kg S ha-1. In general, the 

result demonstrated that number of pod per plant increased with S application rate under 

inoculated condition with 1.5 kg Zn ha-1. But the trend is not consistent. The increase of number 

in pods per plant with applications of Zn might be due to the positive effect of Zn on formation 

of stamens and pollens which could increase number of pods produced in the plant (Usman et 

al., 2014). S plays many important roles in the growth and development of plants including 

chlorophyll and nitrogenize formation, promotes nodule formation and enzyme activation 

(Fageria, 2009). Similarly, El-Kadar and Mona (2013) reported that combined application of S 

and Zn increase pods number by 19.7% over the control. Other researchers (Nasreen and Farid, 

2006; Kanase et al., 2006; Togay et al., 2008; Zhao et al., 2008; Hussain et al., 2011; Nasri et 

al., 2011; Najar et al., 2011; Namvar et al., 2011; Ram and Katiyar, 2013; Kesare, 2014; Kayan 

et al., 2015; Das et al., 2016; Jadeja et al., 2016) also reported that number of pod increased 

with Rhizobium inoculation, S and Zn application.  
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Table 12. Number of pods per plant of chickpea as affected by Rhizobium inoculation, S and 
Zn fertilizer rates 

 
Treatment 

Number of pods per plant (no plant-1) 
Mean 

Tsion Denzaz 
Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 42.9g 46.5de 31.4f 33.3def 37.2g 39.9ef 
S15 49.1bc 51.3a 34.9cde 34.8cde 42cd 43.1bc 
S30 40bc 50.4ab 47.7a 33def 48.3a 41.7bc 

R0 
S0 48.1cd 48.4c 32.1ef 34.6cde 40.1def 41.5cde 
S15 44.4fg 45.6ef 35.4cd 33.1def 39.9ef 39.3f 
S30 48.2cd 51a 38.6b 37.5bc 43.4bc 44.2b 

LSD0.05 1.8117 3.12 1.98 
CV(%) 2.22 5.19 2.79 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, CV = Coefficient of variation 

4.4.3. Number of Seeds Per Pod 

Number of seeds per pod exhibited a significant response to the main effect of S application and 

its two way interaction with Zn at Denzaz (P ≤ 0.05) (Appendix Table 5). At Tsion site only the 

two way interaction between S and Zn was significantly influenced this trait (Appendix Table 

5). 

The analysis of variance also revealed that the three way interaction significantly (P≤ 0.05) 

affected number of seed at Denzaz site and its mean value over locations (Table 13). In general, 

the non-significant and lower number of seeds per pod at Tsion than Denzaz was justified by 

the emergence of pod borer during pod setting period of the crop. At Denzaz site, highest number 

of seed (1.4) was recorded with combined application of 30 kg S ha-1 and 1.5 kg Zn ha-1. The 

highest mean value of number of seeds per pod over locations (1.3) was recorded with combined 

application of rhizobium inoculation with 30 kg S and 1.5 kg Zn ha-1 which resulted in 8.3% 

increase over the control check. This treatment combination was found statistically as par with 

combined applicationof 30 kg S and 1.5 kg Zn ha-1.  This could be due to the fact that sulfur 

deficiency causes significant reduction of leaf size and photosynthetic materials and resulted in 

reduction seed number (Hitsuda et al., 2004). Rhizobium inoculation provides adequate supply 

of N for plant and resulted in increased chlorophyll synthesis and photosynthetic products. The 

result of the present study was in conformity with Shivakumer (2001), Boem et al. (2007), 

Kanase et al. (2006), Zhao et al. (2008), Togay et al. (2008), Nasri et al. (2011), Ram and 
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Katiyar (2013), Kesare (2014), Kayan et al. (2015), Sipai et al. (2016), Sharifi (2016) and Das 

et al. (2016) who have reported that the role of Rhizobium inoculation, S and Zn in increasing 

seed per pod. 

Table 13. Number of seeds per pod of chickpea as affected by Rhizobium inoculation, S and 
Zn fertilizer rates 
 
Treatment 

Number of seed per pod (no pod-1) 
Mean 

Tsion Denzaz 
Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 1.2 1.1 1.3ab 1.3abc 1.2abc 1.2abcde 
S15 1.2 1.2 1.1d 1.2cd 1.2de 1.2bcde 
S30 1.1 1.3 1.3ab 1.3abc 1.2bcde 1.3a 

R0 
S0 1.2 1.2 1.3ab 1.3abc 1.2abc 1.2bcde 
S15 1.3 1.2 1.2bcd 1.1d 1.2abcd 1.2cde 
S30 1.2 1.3 1.1d 1.4a 1.2b 1.3a 

LSD0.05 NS 0.1059 0.0955 
CV(%) 5.99 5.08 4.61 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, NS = Not significant at P ≤ 0.05, CV = Coefficient 
of variation 

4.4.4. Hundred Seed Weight 

The main effect of S affected hundred seed weight at Tsion and Denzaz site (P≤ 0.05). At Tsion 

and mean value, the main effect of inoculation and Zn was found significant (P≤ 0.01). The 

result also indicated that the two way interaction between Zn with inoculation and S was 

significantly influenced this trait (P ≤ 0.05) (Appendix Table 5). Moreover, this trait was 

significantly (P≤ 0.05) affected by the three way interactions (Table 14). 

At Tsion site, the highest (29.9 g) and lowest (28.2 g) hundred seed weight were obtained from 

the combined application of rhizobium inoculation with 30 kg S ha-1 and 1.5 kg Zn ha-1 as well 

as sole applicationof 1.5 kg Zn ha-1 and Rhizobium inoculation alone, respectively. At Denzaz 

site, the highest (29.6 g) was found from combined application of Rhizobium inoculation and 

1.5 kg Zn ha-1. At this location the lowest (28.1) was obtaine in response to sole application of 

Rhizobium inoculation and sole application of 30 kg S ha-1. Mean hundred seed weight over 

locations varied from 28.2 g with Rhizobium inoculation alone to 29.41 g with combined 

application of rhizobium inoculation with 30 kg S ha-1 and 1.5 kg Zn ha-1 application. This 

increase in 100 grains weight due to rhizobium inoculation may be due to the more delivery of 
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nitrogen by biological N2 fixation (Aslam et al., 2010). Zn application also had a pivotal role on 

crop growth, involving in photosynthesis, respiration and nitrogen metabolism-protein 

synthesis. The assimilated photosynthates are translocated from vegetative plant parts to the 

seed, thus, considerably enhance seed weight (Kakiuchi and Kobata, 2008). Better growth and 

development of crop plants due to S supply and nitrogen uptake might have increased the supply 

of assimilates to seed, which ultimately gained more weight. Similarly, different authors 

observed that the importance of Rhizobium inoculation, S and Zn in increasing hundred seed 

weight (Nasreen and Farid, 2006; Namvar et al., 2011; Nasri et al., 2011; Sipai et al., 2016; 

Jadeja et al., 2016; Das et al., 2016). 

Table 14. Hundred seed weight of chickpea as affected by Rhizobium inoculation, S and Zn 
fertilizer rates 

 
Treatment 

Hundred seed weight (g 100 seed-1) 
Mean 

Tsion Denzaz 
Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 28.2e 28.7de 28.1e 29.6a 28.2b 29.1ab 
S15 28.5de 28.4e 28.4cde 29abc 28.5ab 28.7ab 
S30 29.5ab 29.9a 29.2ab 28.9bcd 29.3a 29.41a 

R0 
S0 29.4ab 29.9a 29.3ab 28.3de 29.3a 29.1ab 
S15 28.9cd 28.5de 28.1e 29abc 28.5ab 28.8ab 
S30 29.3bc 29.5ab 29.5ab 29.3ab 29.4a 29.4a 

LSD0.05 0.492 0.71 0.38 
CV(%) 0.99 1.45 0.78 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference,  CV = Coefficient of variation 

4.5. Crop Phenology 

4.5.1. Days to 50% Flowering 

Reproduction is one of the most important events during the life cycle of higher plants. Several 

environmental factors such as drought (Sharma and Ashok, 2009), salinity (Bram and Quinn, 

2013) and micronutrient stress (Pandey, 2010) affect the normal process of reproduction. 

Among micronutrient stress that limits reproduction, Zn deficiency has predominant effect on 

flower initiation and development. Plants exposed to Zn deficiency show delayed flowering, 

premature bud abscission, reduced seed set and seed yield. Days to 50% flowering was affected 

significantly (P ≤ 0.05) by the main effect of inoculation and Zn at Denzaz and S at Tsion site 
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respectively. The two way interaction of inoculation with S with Zn was also found significant 

at Tsion and Denzaz sites, respectively (Appendix Table 5).  

The three way interaction effect of rhizobium inoculation, S and Zn was found to be statistically 

significant (P ≤ 0.05) at Tsion and Denzaz sites (Table 15). At Tsion site, the longest (52 days) 

and shortest (47 days) days to 50% flowering were observed with rhizobium inoculation alone 

and sole application of 15 kg S ha-1 as well as with interaction between Rhizobium inoculation 

and Zn application at 1.5 kg ha-1, respectively. At Denzaz site, the longest and shortest dates to 

50% flowering was found to be 54 and 49 days due to sole application of 15 kg S ha-1and 

rhizobium inoculation plus 1.5 kg Zn ha-1 as well, respectively. The highest and the lowest day 

to 50% flowering at Denzaz site was somewhat elongated than those found at Tsion site. This 

is probably due to supplementation of the crop with irrigation at Denzaz site and this might lead 

to elongated period of vegetative growth of chickpea (Rajin et al., 2003). 

Table 15. Days to 50% flowering of chickpea as affected by Rhizobium inoculation, S and Zn 
fertilizer rates 

Treatment 
Days to 50% flowering (no) 

Mean 
Tsion Denzaz 

Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 52a 47ab 51ab 49b 51 48 
S15 50ab 49ab 50ab 52ab 50 51 
S30 50ab 49ab 53ab 52ab 52 51 

R0 
S0 50ab 48ab 51ab 52ab 51 50 
S15 47b 51ab 54a 52ab 51 52 
S30 48ab 50ab 51ab 51ab 49 50 

LSD0.05 1.59 1.30 NS 
CV(%) 1.83 1.56 3.77 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, NS = Not significant at P ≤ 0.05, CV = Coefficient 
of variation 

4.5.2. Days to Physiological Maturity 

Days to physiological maturity was affected by the main effect of S and its two way interaction 

with inoculation and Zn at both locations and their mean value over locations (Appendix table 

5). Moreover, the main effect of Zn was found significant on the mean value of this trait over 

locations. The analysis of variance also showed that days to physiological maturity and its mean 

value over locations were significantly influenced by the three way interaction at P ≤ 0.05 (Table 
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16). At Tsion site, the longest days to physiological maturity (120.7) was observed with 

Rhizobium inoculation alone. At Denzaz site, the longest days to physiological maturity (108.7) 

was observed with the control check. The longest days to physiological maturity due to 

Rhizobium inoculation at Tsion site was justified by the fact that Rhizobium inoculation 

enhanced supplies of N through BNF promote vegetative growth. Moreover, the longest days to 

physiological maturity observed with control check at Denzaz site might be due low fertility 

status in the study site (Table 1). The present study also indicated that mean value of days to 

attain physiological maturity over locations were varied from 110 to 114.2 days in response to 

sole application of 15 kg S ha-1 and control check, respectively. This was due to the fact that 

application of S enhances crop growth and increase nutrient uptake by the crop (Motior et al., 

2011) and this contributes to reduction of days to physiological maturity. 

Table 16. Days to physiological maturity of chickpea as affected by Rhizobium inoculation, S 
and Zn fertilizer rates 

 Treatment 
Days to physiological maturity (no) 

Tsion Denzaz Mean 
    Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 120.7a 118abc 106.3ab 106.3ab 113.5ab 112.2abcd 
S15 116c 117bc 105.3b 105.3b 110.7cd 111.2bcd 
S30 116.7bc 115c 106ab 105.3b 111.3bcd 110.2cd 

R0 
S0 119.7ab 118abc 108.7a 107.3ab 114.2a 112.7abc 
S15 114.7c 117bc 105.3b 104.7b 110d 110.8cd 
S30 116.7bc 116.3bc 105.3b 104.7b 111bcd 110.5cd 

LSD0.05 3.34 3.24 2.5 
CV(%) 1.69 1.81 1.33 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, CV = Coefficient of variation 

4.6. Yield and Yield Related Data 

4.6.1. Seed Yield 

The main effect of rhizobium inoculation and Zn application exhibited no significant effect on 

seed yield at both locations and on mean value combined over locations at P ≤ 0.05. But the 

main effect of S application was found significant at P≤ 0.01 (Appendix Table 6). In agreement 

with the present finding, Mondal et al. (2005), Islam et al. (2011), Banik and Sengupta (2012), 

Patel et al. (2013), Bohra (2014), Das et al. (2016), and Jadeja et al. (2016) reported that S 
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application increased seed yield of chickpea. It is known that S application enhances chlorophyll 

concentration, root nodules and dry matter production and this all contribute for yield increment 

(Erdal et al., 2006). Moreover, acidity produced on oxidation of reduced inorganic sulphur 

compounds in soil was known to increase the solubility of micronutrients, like iron, zinc and 

manganese (Vidyalakshmi et al., 2009). The analysis of variance also showed that seed yield 

responded to the two way interaction of S and Zn. Seed yield was also significantly influenced 

by the three way interaction of inoculation, S and Zn at both locations and its mean combined 

over locations (Table 17). In general, this result suggests seed was significantly increased with 

S rates when the plant was inoculated and fertilized with 1.5 kg Zn ha-1. At Tsion site, the highest 

(2039.8 kg ha-1) seed yield was obtained from the rhizobium inoculation integrated with 30 kg 

S ha-1 while the lowest (1693.2 kg ha-1) was from the rhizobium inoculation alone.  

At Denzaz site, the highest (1515.2 kg ha-1) seed yield was also obtained from rhizobium 

inoculation integrated with 30 kg S ha-1 whereas the lowest (1020.5 kg ha-1) was from the control 

check. Combined over locations, the highest (1777.5 kg ha-1) mean seed yield was obtained 

from the integrated application of rhizobium and 30 kg S ha-1 which resulted in 28.02% (389 kg 

ha-1) yield advantage over the control check (Table 17). The highest yield is probably due to the 

highest number of pods per plant (Penaloza, 1984; Hardwick, 1988). The present study also 

revealed that, increasing S and Zn when integrated with rhizobium inoculation resulted in seed 

yield increment until 15 kg S ha-1 (Table 17). This was probably due to the impact of S 

application in increasing the availability of Zn at high pH. Plaster (2013) reported that 

deficiencies of Zn at higher pH can be corrected by the application of S. The increase in yield 

might be due to the fact that Zn has beneficial effect in chlorophyll content and helps in the 

formation of growth hormones and indirectly influence the photosynthesis and reproduction. It 

also helps in developing the enzyme and vitamins. Sulphur also performs many physiological 

functions in cystien, methionine and chlorophyll synthesis. This result was in agreement with 

some previous finding reported on the importance of combined application of S and Zn in 

increasing seed yield (Chauhan et al., 2013). Similarly, Pable et al. (2010) reported that 

application of 30 kg S and 2.5 kg Zn ha-1 in vertisols having deficency in Zn and S significantly 

increased seed yield of soybean. Moreover, Pable et al. (2010) and Pratibha et al. (2014) 

reported the significant interaction of S and Zn on seed yield. Other studies also justified the 

significant interaction of inoculation (Togay et al., 2008; Rokhzadi and Toashih, 2011; Ahmed 
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et al., 2010; Namvar and Sharifi, 2011; Namvar et al., 2011), S (Zhao et al., 2008; Srinivasarao 

et al., 2008; Islam et al., 2011; Kesare, 2014; Zafar et al., 2014) and Zn application (Tiwari et 

al., 2006; Srinivasarao et al., 2008; Mohammad Reza Haj Seyed Hadi et al., 2013; Zafar et al., 

2014; Sharifi, 2016) on seed yield of chickpea. 

Table 17. Seed yield of chickpea as affected by Rhizobium inoculation, S and Zn fertilizer 
rates 
Treatment Seed yield (kg ha-1) 

Tsion Denzaz Mean 
  Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 1693.2e 1895.4abcd 1150.3ef 1241.8de 1421.8fg 1568.6cde 
S15 1775.6cde 1903.6abcd 1304.2bcde 1429abc 1539.9def 1666.3abcd 
S30 2039.8a 1797.4bcde 1515.2a 1307.2bcde 1777.5a 1552.3cdef 

R0 
S0 1756.5cde 1726.6de 1020.5f 1265.6cde 1388.5g 1496.1efg 
S15 1963.5ab 1936.2abc 1307.2bcde 1307.2e 1635.4abcd 1621.7abcd 
S30 1963.5ab 1919.9abc 1405.2abcd 1482.4ab 1684.4abc 1701.2ab 

LSD0.05 186.14 186.5 133.39 
CV(%) 5.85 8.45 4.94 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, CV = Coefficient of variation. 

4.6.2. Straw Yield 

Straw yield which was obtained from Denzaz was significantly influenced by the main effect of 

S, Zn and two-way interaction of S with inoculations and Zn at P ≤ 0.05. At Tsion site, the main 

effect of rhizobium inoculation and Zn and the two-way interaction between S with rhizobium 

inoculation and Zn were significant. Moreover, the two-way interaction of S with rhizobium 

inoculation and Zn application were significant on the mean values over location at P ≤ 0.01 

(Appendix Table 6). Straw yield was also significantly influenced by the three-way interaction 

of inoculation, S and Zn at both locations and its mean combined over locations (Table 18). 

At Tsion site, the highest (1398.4 kg ha-1) straw yield was obtained from rhizobium inoculation 

alone while the lowest (1051.2 kg ha-1) was from application of 1.5 kg Zn ha-1. At Denzaz site, 

the highest straw yield (1491.2 kg ha-1) was obtained from combined application of rhizobium 

inoculation with 1.5 kg Zn ha-1. Combined over locations, the highest (1370.6 kg ha-1) mean 

straw yield was obtained from combined application of rhizobium inoculation and 1.5 kg Zn ha-

1 which resulted in 27.6% straw yield advantage over the control check. In consistent with the 

current finding, Das et al. (2012) reported that rhizobium inoculation with 10 kg ZnSO4 and 25 
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kg ZnSO4 ha-1 resulted in increased straw yield. Similar result were concluded by Sipai et al. 

(2016) and Pable et al. (2010) who found positive role of rhizobium inoculation and Zn 

application on straw yield for mungbean and soybean, respectively. Srivastava et al. (2006) also 

reported that the combined application of rhizobium inoculation with 30 kg S and 5 kg Zn ha-1 

increase straw yield of summer green gram. 

Table 18. Straw yield of chickpea as affected by Rhizobium inoculation, S and Zn fertilizer 
rates 
Treatment Straw yield (kg ha-1) 

Tsion Denzaz Mean 
  Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 1398.4a 1250bcd 1015.4e 1491.2a 1206.9de 1370.6a 
S15 1190.1cd 1239.1bcd 1369.6ab 1194.3d 1279.8bcd 1216.7cde 
S30 1334.4ab 1171cd 1375.5abc 1209.2cd 1355a 1190.1de 

R0 
S0 1160.1d 1051.2e 987.8e 1212.1cd 1074f 1131.7ef 
S15 1269bc 1228.2cd 1206.2cd 1247.7abc 1237.6cd 1238abc 
S30 1334.4ab 1236.4bcd 1390.3ab 1339.9bcd 1362.4a 1288.1abc 

LSD0.05 105.38 152.39 90.87 
CV(%) 5 7.14 4.27 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, I 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, CV = Coefficient of variation 

4.6.3. Harvest Index 

Harvest index determines the amount of photosynthates being translocated to the economic parts 

of plant. Harvest index was influenced significantly (P ≤ 0.05) due to the main effect of 

inoculation, Zn and the two way interaction with S at Tsion site. The two way interaction 

between S and inoculation was also significant (P ≤ 0.05) in mean value of this trait over 

locations (Appendix Table 6). Moreover, this trait and its mean value over locations were 

significantly influenced by three way interactions (Table 19). 

At Tsion site, the highest (0.62) and lowest (0.56) harvest Index was measured with control 

check and rhizobium inoculation plus 1.5 kg Zn ha-1, respectively. The highest harvest index 

observed with control check at Tsion site was justified by the fact that lowest biological yield 

coupled with lowest uptake of nutrient (N and P) observed with this treatment forced the plant 

to allocate higher photosynthetic product to the seed. Rhizobium inoculation plus 1.5 kg Zn ha-

1 resulted in lower mean harvest index over locations. At Denzaz site, the highest (0.55) and 
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lowest (0.46) harvest Index was recorded with rhizobium Inoculation when integrated with 15 

kg S and 1.5 kg Zn ha-1 and rhizobium Inoculation applied with 1.5 kg Zn ha-1, respectively. 

Previous research finding also indicated the positive role of rhizobium inoculation, S and Zn 

nutrient application in increasing harvest index (Roy et al., 1995; Khamparia, 1996; Malik et 

al., 2006; Khorgamy and Farina, 2009; Valenciano et al., 2009; Valenciano et al., 2011).  

Table 19. Harvest Index of chickpea as affected by Rhizobium inoculation, S and Zn fertilizer 
rates 

Treatment 
 Harvest index 

Mean 
Tsion Denzaz 

Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 0.6ab 0.56c 0.53ab 0.46e 0.57a 0.51b 
S15 0.61ab 0.6ab 0.49cd 0.55a 0.55a 0.58a 
S30 0.61ab 0.6ab 0.52ab 0.52ab 0.57a 0.56a 

R0 
S0 0.62a 0.6ab 0.51bc 0.52bc 0.56a 0.58a 
S15 0.61ab 0.61ab 0.52ab 0.51ab 0.57a 0.56a 
S30 0.61ab 0.6b 0.5bc 0.52ab 0.57a 0.56a 

LSD0.05 0.025 0.0283 0.02035 

CV(%) 2.47 8.16 2.41 
Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, CV = Coefficient of variation 

4.7. Nutrient (N and P) Uptake 

4.7.1. Total N Uptake 

Total N uptake of legume can serve as a good indicator of N2 fixation. Total N uptake which 

was obtained from both locations and its mean combined over locations was significantly 

affected by the main effect of S and its two way interaction with Zn at P ≤ 0.05 (Appendix Table 

7). Moreover, the main effect of inoculation and Zn application was found to be significant at 

Denzaz and mean value combined over locations. The analysis of variance also showed that the 

two way interaction of inoculation with Zn and S was statistically significant at Denzaz and 

mean value respectively (P ≤ 0.05) (Appendix table 7). 

The result also found that total N uptake of chickpea was significantly influenced by the three 

way interaction at P ≤ 0.05 (Table 20). The highest total N uptake (67.4 kg ha-1) was generally 

observed in Tsion kebele. This was justified by the fact that highest biological yield also 

observed in this kebele. The total N uptake of this site varied from 67.4 to 49.8 kg ha-1 with 
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Rhizobium inoculation when integrated with 30 kg S and 1.5 kg Zn ha-1 and control check, 

respectively. At Denzaz site, the highest (52.4 kg N ha-1) and lowest (30.8 kg N ha-1) total N 

uptake was recorded in response the rhizobium inoculation applied with 30 kg S ha-1 and at the 

control check, respectively.  

The combined analysis over location indicated that, the highest (58.7 kg ha-1) total N uptake 

were recorded when rhizobium was inoculated with, 30 kg S and 1.5 kg Zn ha-1, which resulted 

in 45.7% increase over the control check (Table 20). This increment could be attributed to 

rhizobium inoculation helped in biological nitrogen fixation and thus, increase N content in 

grain and straw. The increase in N uptake as a result of S application may be due to an increment 

in protein synthesis and enhance photosynthesis (Zhao et al., 2008). In the absence of S, amino 

acids cannot be transformed into proteins, which results in reduced N acquisition (Varin et al., 

2009). Zn is involved in auxin metabolism like, tryptophane synthesis, tryptamine metabolism, 

protein synthesis, formation of nucleic acid and helps in utilization of nitrogen as well as 

phosphorus by plants (Ram and Katiyar, 2013).  

Similar to the current findings N uptake increase due to rhizobium inoculation, S and Zn 

application have been reported by several literatures (Zaidi et al., 2003; Rokhzadi and Toashih, 

2011; 2012; Sharma and Gupta, 1992; Mondal et al., 2005; Shamima and Farid, 2006; 

Srivastava et al., 2006; Togay et al., 2008; Najar et al., 2011; Abdalla et al., 2011; Hussain et 

al., 2011; Jay et al., 2012; EL-Kader and Mona, 2013; Muhammad et al., 2013; Kesare, 2014; 

Yohannes et al., 2015; Srinivasulu et al., 2015; Das et al., 2016; Zerihun et al., 2017) 
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Table 20. Total Nitrogen uptake of chickpea as affected by Rhizobium inoculation, S and Zn 
fertilizer rates 

Treatment 
Total Nitrogen Uptake (kg ha-1) 

Tsion Denzaz Mean 
Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 56.6def 53.4efg 35.6h 41.6fg 46.1f 47.5f 
S15 60.4bcd 57.3cde 45.6de 47.4cd 53cde 52.3bde 
S30 58.4cd 67.4a 52.4a 50.1ab 55.4bc 58.7a 

R0 
S0 49.8g 52.3fg 30.8i 39.7g 40.3g 46f 
S15 60bcd 61.5bc 43.6ef 44.1ef 51.8e 52.8de 
S30 61.5bc 64.6ab 48.6bc 51.3a 55cd 58ab 

LSD0.05 4.88 2.4 2.58 
CV(%) 4.88 3.21 2.95 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, 
I+=Rhizobium inoculated, I-= un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, CV = Coefficient of variation 

4.7.2. Total P Uptake 

The main effect of S and Zn at both locations and mean value over location significantly 

influenced the total P uptake at P ≤ 0.01. Similarly, the main effect of inoculation was found to 

be statistically significant at Tsion site and mean value at P ≤ 0.01 (Appendix Table 7). The 

analysis of variance also showed that, the two way interaction of S with inoculation and Zn 

application were found to be significantly (P ≤ 0.05) influenced total P uptake at both location 

and mean value combined over locations. Moreover, total P uptake was affected by the three 

way interaction (Table 21). At Tsion site and mean value over locations, the highest and lowest 

total P uptakes were found due to combined application of 30 kg S with 1.5 kg Zn ha-1 and 

Rhizobium inoculation, respectively. But the highest mean value was Statistically as par with 30 

kg S ha-1application. At Denzaz site, the highest (10.5 kg ha-1) total P uptake was obtained with 

sole application of 30 kg S ha-1. The highest mean total P uptake increase by 65.7% over the 

control check. This could be due to the fact that S application increases P availability in the soil 

by which enhance the P uptake by plant (Fageria, 2009). This attributed to the fact that oxidation 

of S produce H2SO4 which could solubilize P. Similarly, Kapoor and Mishra (1989) found that 

the acidity generated on oxidation of pyrite can be coupled to solublization of rock phosphate. 

Gowda et al. (2001) also found that the increase in available P in soil solution is attributed to 

ion exchange with sulphate-S ion. Previously, seed P uptake increased in response to S 

application have been reported (Togay et al., 2008; Najar et al., 2011; Yadav, 2011; Muhammad 
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et al., 2013; Kesare, 2014; Das et al., 2016; Srinivasulu et al., 2015; Zerihun et al., 2017). In 

contrary, Srivastava et al. (2006) reported that Rhizobium inoculation with 30 kg S and 5 kg Zn 

increase P total uptake of summer green gram. 

Table 21. Total Phosphorus uptake of chickpea as affected by Rhizobium inoculation, S and 
Zn fertilizer rates 

Treatment 
Total Phosphorus Uptake (kg ha-1) 

Tsion Denzaz Mean 
Zn0 Zn1.5 Zn0 Zn1.5 Zn0 Zn1.5 

R1 
S0 8.2f 8.6ef 6.2g 9.7abcd 7.2f 9.1d 

S15 10.8cd 11cd 9.9abc 8.9cde 10.4bc 9.9c 
S30 10.7d 12.5b 9.8abcd 8.9def 10.3c 10.7b 

R0 
S0 8.4f 9.1e 5.6g 8f 7f 8.6e 

S15 12b 11.3c 8.5ef 9.2bcde 10.2bc 10.2bc 
S30 12.7b 13.2a 10.5a 10ab 11.6a 11.6a 

LSD0.05 0.55 0.92 0.51 
CV(%) 3 6.21 3.09 

Means with the same letter are not significantly different at P>0.05 level of probability following LSD, I 
R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, LSD= Least significant difference, CV = Coefficient of variation 

4.8. P Harvest Index and P Use Efficiency 

In figure 20 and 22 show that the highest P harvest index were recorded with rhizobium 

inoculation and application of 1.5 kg Zn ha-1 increase mean P harvest index by 13.3% and 11.7% 

over the negative control, respectively. Regardless of S application rate, it was increased P 

harvest index when compared with negative control (Figure 21). The result also demonstrated 

that at both locations, the highest P use efficiency (77.3% at Tsion site and 163.6% at Denzaz 

site) were obtained with Rhizobium inoculation which resulted in 31% and 45.3% increase over 

the un-inoculated treatment (Figure 23). Application of 15 kg S ha-1 also caused the highest P 

use efficiency at both locations and mean value over location. This treatment increased P use 

efficiency by 12.6% over S control.  

The increase in P use efficiency due to Rhizobium inoculation and S application could be due to 

the need of high P for ATP synthesis as result of high BNF activity and increase the P availability 

due to S application. Similarly, Khair et al. (2002) reported that Rhizobium inoculation increased 

P uptake efficiency. Ahirwar et al. (2016) also indicated that Rhizobium inoculation increase 
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agronomic and physiologic P use efficiency by 14.2% and 13.9 over the control in pigeon pea. 

Ahmad et al. (1994) found that NPK application under S deficient condition did not increase 

the P use efficiency and crop yield in sustainable ways. in contrast to this, Zn application did 

not affect P use efficiency (Figure 25). This could be attributed to the fact that application of Zn 

to plants grown in Zn deficient soils is effective in reducing uptake and accumulation of P (and 

phytate) in plants (Mousavi, 2012). 
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Figure 8. P Use efficiency as influenced by 
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Figure 9. P Use efficiency as influenced by 
rate of S application 
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4.9. Partial Budget Analysis 

It is quite evident from the data presented in Table 22, that the highest mean total gross benefit 

(38433.4 birr ha-1) and mean net benefit (37069.4 birr ha-1) was obtained when Rhizobium 

applied with 30 kg S ha-1. The next better return was 35485.5 ha-1 birr which was obtained from 

30 kg S applied together with 1.5 kg Zn ha-1. The lowest mean total gross benefit and mean net 

benefit of 30050.3 birr ha-1 was obtained from the control check and found net benefit penalty 

of 23.4% (7019.1 birr ha-1). 

According to the dominance analysis on mean value over locations, control check, R1 (Rhizobium 

inoculation alone), R1S15 (Rhizobium inoculation + 15 kg ha-1 Sulphur) and R1S30Zn1.5 

(Rhizobium inoculation + 30 kg ha-1 Sulphur + 1.5 kg ha-1 Zinc) were dominated by other 

treatments, hence, eliminated from further economic analysis (Figure 26). The highest MRR 

(marginal rate of return) of 1941% was obtained from combined application of Rhizobium 

inoculation and 30 kg S ha-1 (Table 23). This implies that for 1.00 birr investment in chickpea 

production, the producer can get 19 birr. 
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Figure 11. Net benefit Curve 

NB=Note- treatments with dots below the line are dominated treatments, hence are not attractive economically. 
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Table 22. Partial Budget Analysis  
Treatment AGY ASY GBG GBS TGB TVC NB D 
R1 1279.6 1086.2 28791.5 2172.4 30963.9 164 30799.9 DM 
R1Zn1.5 1411.7 1233.5 31764.2 2467.1 34231.2 246 33984.8  
R1S15 1385.9 1151.8 31183.0 2303.6 33486.6 964 32522.6 DM 
R1S15Zn1.5 1499.7 1095.0 33742.6 2190.1 35932.6 1046 34886.2  
R1S30 1599.8 1219.5 35994.4 2439.0 38433.4 1364 37069.4  
R1S30Zn1.5 1397.1 1071.1 31434.1 2142.2 33576.3 1446 32129.9 DM 
Control  1249.7 966.6 28117.1 1933.2 30050.3 0 30050.3 DM 
Zn1.5 1346.5 1018.5 30296.0 2037.1 32333.1 82.4 32250.7  
S15 1471.9 1113.8 33116.9 2227.7 35344.5 800 34544.5  
S15Zn1.5 1459.5 1114.2 32839.4 2228.4 35067.8 882.4 34185.4  
S30 1516.0 1226.2 34109.1 2452.3 36561.4 1200 35361.4  
S30Zn1.5 1531.1 1159.3 34449.3 2318.6 36767.9 1282 35485.5  

R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1,GY= Adjusted seed yield ((kg ha-1), ASY= Adjusted straw yield (kg ha-1), GBS=gross 
benefit from straw (ETB ha-1), GBG=gross benefit from straw (ETB ha-1), TGB=total gross benefit (ETB ha-1), 
TVC=total cost that vary (ETB ha-1), NB=net benefit (ETB ha-1), D=dominance, DM=dominated. 
 

Table 23. Marginal analysis of undominated treatment 
Treatment NB TVC MB MC MRR (%) 
Zn1.5 32251 82.4 1734.1 0 0 
R1Zn1.5 33985 246.4 559.7 164 1057 
S15 34545 800 -359.1 553.6 101.1 
S15Zn1.5 34185 882.4 700.81 82.4 -435.8 
R1S15Zn1.5 34886 1046 475.18 164 427.3 
S30 35361 1200 124.06 153.6 309.4 
S30Zn1.5 35485 1282 1583.9 82.4 150.6 
R1S30 37069 1364 1734.1 81.6 1941 

R1=Rhizobium inoculated, R0=un-inoculated, S0= 0 kg S ha-1, S15= 15 kg S ha-1, S30= 30 kg S ha-1, Zn0= 0 kg Zn 
ha-1, Zn1.5=1.5 kg Zn ha-1, TVC=total cost that vary (ETB ha-1), NB=net benefit (ETB ha-1), MRR=marginal rate 
of return. 
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5. SUMMARY AND CONCLUSIONS 

Nitrogen fixation is one of the most important biological process next to photosynthesis on the 

earth. However, due to nutrient deficiency, the N2 fixation is impaired and consequently causes 

low crop productivity in sub-Saharan Africa. In most tropical soils including in Ethiopia N, P, 

S and Zn are the major limited nutrients for crop production. Ensuring a well-balanced supply 

of P, S and Zn to the chickpea crop may result in higher seed yield through improving nodule 

activities and nitrogen fixation. Hence field experiment was initiated to evaluate the effect of 

Sulphur and Zinc application with rhizobium on the performance of chickpea. 

Factorial combinations of two levels of inoculation (rhizobium inoculation and un-inoculation), 

three levels of S (0, 15 and 30 kg S ha-1) and two levels of Zn (0 and 1.5 kg Zn ha-1) in RCB 

design with three replications were used. All the experimental plots were treated with equal 

amount of 20 kg N ha-1 and 20 kg P ha-1.  

Composite surface soil samples (0-30 cm depth) were collected before planting from 5 locations 

from Gonder Zuria Woreda where non responsiveness to rhizobium inoculation and P fertilizer 

application for chickpea has been observed. The soil analysis indicated that the soil is clayey in 

texture. The pH (H2O) of the soil ranged between neutral (pH 7.0) and moderately alkaline (pH 

7.9). All sites were very high in CEC, The whole sites were low in OM content with a mean 

value of 1.16%. Total N ranged from very low to low with mean value of 0.052%. Available 

(Olsen) P of the soil ranged from low to high with a mean value of 7.42 mg kg-1. At all the tested 

sites, available S ranged between very low and low. All sites had very high and high in 

exchangeable Ca++/Mg++ and K+, respectively. From the micronutrient investigated, only Zn 

deficiency was observed in the whole five farms. Based on the soil testing result, S and Zn had 

been considered as the nutrients to be corrected by applying fertilizer along with Rhizobium 

inoculation.  

Analysis of variance revealed that the three way interaction of inoculation, S and Zn nutrient 

application had significant (P ≤ 0.05) influence on nodule parameters at both locations and the 

mean value over locations. At Tsion site, the highest nodule number (15.7) was obtained from 

the combined application of 15 kg S and 1.5 kg Zn ha-1 while at Denzaz site, the highest nodule 

number (15.8) was obtained from the combined application of Rhizobium inoculation, 15 kg S 
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and 1.5 kg Zn ha-1. The highest (15.3) mean nodule number over locations was obtained from 

Rhizobium inoculation integrated with 15 kg S and 1.5 kg Zn ha-1 which resulted in 37.8% 

increment over the control check. The highest mean value of nodule volume (1.3 ml plant-1) 

over locations was obtained from combined application of Rhizobium inoculation with 15 kg S 

ha-1and 1.5 kg Zn ha-1 which resulted in 116.7% increase over the control check. The nodule 

color was found ranging between pink and slightly dark red. The present study also found that, 

the highest (6.7) mean nodulation rating over locations was obtained with Rhizobium inoculation 

when integrated with 30 kg S ha-1 which resulted in 86.1% increase over the control check. 

It was observed that, the three way interaction among inoculation, S and Zn significantly 

affected all growth trait studied except plant height at both locations, shoot dry weight and 

number ofseeds per pod at Tsion. The results also demonstrate that, the interaction of the three 

factors significantly affect crop phenology, seed yield, straw yield, N and P uptake of seed and 

straw at both locations and their mean.  

With respect to seed yield, the main effect of S application significantly (P ≤ 0.05) increase the 

seed yield of chickpea at both locations and its mean value over location but not found in 

inoculation and Zn. Likewise, the three way interaction among inoculation, S and Zn application 

significantly influenced seed yield. The highest (1777.5 kg ha-1) and lowest (1388.5 kg ha-1) 

mean seed yield combined over location were observed with combined application of rhizobium 

inoculation plus 30 kg S ha-1 and control check, respectively. Mean straw yield of chickpea over 

location also significantly affected by the interaction of three factors. The highest (1370.6 kg 

ha-1) and lowest (1074 kg ha-1) were obtained from combined application of rhizobium 

inoculation with 1.5 kg Zn ha-1 and from control check, respectively.  

The analysis of variance showed that N and P uptake were significantly affected by the three 

way interaction. At Tsion site, Rhizobium when integrated with 30 kg S and 1.5 kg Zn ha-1 

application resulted in the highest total N uptake (67.4 kg ha-1) while the highest at Denzaz site 

(52.4 kg ha-1) was obtained in response to Rhizobium when integrated with 30 kg S ha-1. 

Combined analysis over location also found that the highest total N uptake (58.7 kg ha-1) was 

recorded when Rhizobium inoculation, 30 kg S and 1.5 kg Zn ha-1 were applied together, which 

resulted in 45.7% increase over the control check. Similarly, the highest total P uptake at Tsion 

and mean value over location were found due to combined application of 30 kg S with 1.5 kg 



65 
 

 

Zn ha-1. At Denzaz site, the highest (10.5 kg ha-1) and lowest (5.6 kg ha-1) total P uptake was 

obtained when 30 kg S ha-1 applied alone and from the control check, respectively.  

The partial budget analysis showed that the maximum mean total gross benefit (38433.4 birr ha-

1) and mean net benefit (37069.4 birr ha-1) were obtained from Rhizobium when integrated with 

30 kg S ha-1. The lowest mean total gross benefit and mean net benefit of 30050.3 birr ha-1 was 

obtained from the control check. 

The maximum seed yield of chickpea and net benefit was obtained at the 30 kg S ha-1when 

integrated with Rhizobium inoculation. Tentatively, combined application of 30 kg S with 

Rhizobium inoculation of the seed of chickpea is recommended for Gonder Zuria Woreda. 

However, it is difficult to make a definite and reliable conclusion based on two locations and 

one season experiment.  

Attention shall be given to the following issue for future research: 

 Conducting similar research over locations and seasons would be relevant to get 

conclusive result before recommending Rhizobium inoculation in the study site. 

 The effectiveness native rhizobia nodulating chickpea should be evaluated over location 

and the relationship with native rhizobia, soil fertility status and cropping system need 

further investigation. 

 Other better effective rhizobia based inoculant should be developed and tested 
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Appendix Table 1. Mean square values of nodule number, nodule volume and nodule dry weight per plant. 
Source of Variation df NNPP (no plant-1) NVPP (cc plant-1) NDWPP (mg plant-1) 

  Tsion Denzaz Mean Tsion Denzaz Mean Tsion Denzaz Mean 
Replication 2 5.527 4.618 4.793 0.005 0.022 0.010 2.19 4.69 0.549 
Inoculation 1 13.110** 7.747** 0.175ns 0.019* 0.134* 0.064** 75.11** 289.00** 17.361* 
S 2 1.013ns 5.819** 2.614* 0.085** 0.299* 0.175** 25.86** 127.44** 33.465** 
Zn 1 1.925ns 32.680** 12.617** 0.020* 0.090* 0.049* 93.44** 93.44** 0.000ns 
Inoculation x S 2 2.866* 9.269** 3.193* 0.020* 0.060ns 0.037* 312.53** 72.33** 124.465** 
Inoculation x Zn 1 6.481* 0.100ns 1.242ns 0.018* 0.054ns 0.034* 152.11** 25.00ns 75.111** 
S x Zn 2 19.348** 6.325** 11.870** 0.181** 0.528** 0.332** 564.19** 377.44** 463.521** 
Inoculation x S x Zn 2 6.530* 4.795** 5.613** 0.101** 0.284** 0.181** 91.19** 394.33** 204.215** 
Error 22 0.898 0.889 0.602 0.004 0.020 0.008 6.68 7.27 3.208 
Total 35          

df=degree of freedom, NNPP =nodule number per plant (no plant-1), NVPP=nodule volume per plant (cc plant-1), NDWPP=nodule dry weight 
per plant (mg plant-1), **, * and NS = significant at 1%, 5% and non-significant, respectively. 
Appendix Table 2. Mean square values of effectiveness of nodules, nodulation rating and plant height. 
Source of Variation df EN NR PH (cm) 
  Tsion Denzaz Mean Tsion Denzaz Mean Tsion Denzaz Mean 
Replication 2 0.019 0.411 0.128 0.112 0.025 0.059 1.7 1.2 0.013 
Inoculation 1 0.034ns 0.004ns 0.015ns 25.167** 41.818** 32.967ns 3.4* 2.9* 0.010ns 
S 2 0.025ns 0.005ns 0.011ns 3.394** 2.968** 3.154ns 40.4** 13.5* 7.247** 
Zn 1 0.001ns 0.119ns 0.026ns 0.007ns 0.040ns 0.020ns 6.5** 0.2ns 1.027* 
Inoculation x S 2 0.003ns 0.064ns 0.014ns 0.045ns 2.341** 0.759* 4.9** 8.3** 5.915** 
Inoculation x Zn 1 0.020ns 0.032ns 0.026ns 3.300** 0.871** 1.891* 1.2ns 0.8ns 0.004ns 
S x Zn 2 0.016ns 0.023ns 0.019ns 3.875** 0.090ns 1.128* 0.1ns 14.7** 3.917** 
Inoculation x S x Zn 2 0.068* 0.187* 0.117* 1.070** 3.334** 1.858* 0.7ns 0.8ns 0.512ns 
Error 22 0.013 0.037 0.018 0.068 0.027 0.015 0.4 0.4 0.203 
Total 35          

df=degree of freedom, EN =effectiveness of nodule, NR=nodulation rating, PH=plant height (cm), **, * and NS = significant at 1%, 5% 
and non-significant, respectively. 
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Appendix Table 3. Mean square values of root length, shoot dry weight and root dry weight 
Source of Variation df RL (cm) SDW (gm plant-1) RDW (g plant-1) 
  Tsion Denzaz Mean Tsion Denzaz Mean Tsion Denzaz Mean 

Replication 2 1.54 4.38 0.316 0.082 0.21 0.017 0.003 0.003 0.001 
Inoculation 1 6.22* 11.22** 8.791** 0.254ns 0.75ns 0.476ns 0.006* 0.002ns 0.004** 
S 2 9.53** 1.87* 2.945** 0.641ns 9.08** 3.299** 0.005* 0.014** 0.001ns 
Zn 1 0.11ns 0.67ns 0.083ns 1.638ns 0.03ns 0.531ns 0.003ns 0.006* 0.004** 
Inoculation x S 2 1.41ns 5.32** 2.779** 0.808ns 1.58** 0.843* 0ns 0.017** 0.005** 
Inoculation x Zn 1 6.56* 0.27ns 2.223* 0.220ns 2.35** 0.985* 0.05** 0.006* 0.022** 
S x Zn 2 2.64* 4.60** 0.097ns 1.188ns 2.73** 1.857** 0.022** 0.035** 0.013** 
Inoculation x S x Zn 2 4.1** 3.30* 2.945** 0.940ns 2.39** 0.835* 0.043** 0.004* 0.010** 
Error 22 0.79 0.55 0.391 0.487 0.2 0.227 0.001 0.001 0 
Total 35          
df=degree of freedom, RL =root length (cm), SDW=shoot dry weight (g plant-1),  RDW=root dry weight (g plant-1), **, * and NS = 
significant at 1%, 5% and non-significant, respectively. 
 

Appendix Table 4. Mean square values of number of primary branches and number of pod per plant 
Source of Variation df NPB (no plant-1) NPPP (no plant-1) 
  Tsion Denzaz Mean Tsion Denzaz Mean 
Replication 2 0.299 0.013 0.1 6.09 3.5 3.992 
Inoculation 1 0.002ns 0.040ns 0.007ns 3.63ns 3.5ns 3.511ns 
S 2 0.543** 0.779** 0.654** 31.04** 128.9** 71.361** 
Zn 1 0.496* 0.054ns 0.055ns 34.67** 47.2** 0.241ns 
Inoculation x S 2 0.309* 0.276** 0.013ns 58.47** 8.4ns 21.013** 
Inoculation x Zn 1 0.457* 0.160* 0.291** 2.61ns 34.4** 4.529ns 
S x Zn 2 0.125ns 0.384** 0.035ns 0.05ns 79** 18.857** 
Inoculation x S x Zn 2 0.316* 0.801** 0.335** 4.12* 53.1** 20.290** 
Error 22 0.065 0.036 0.022 1.13 3.4 1.356 
Total 35       

df=degree of freedom, NPB =number of primary branch (no plant-1), NPPP=number of pod per plant (no plant-1), **, * and NS = significant 
at 1%, 5% and non-significant, respectively. 
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Appendix Table 5. Mean square values of number of seed, hundred seed weight and days to flowering. 
Source of Variation df NSPP (no pod-1) HSW (gm 100 seed) DF 
  Tsion Denzaz Mean Tsion Denzaz Mean Tsion Denzaz Mean 
Replication 2 0.007 0.007 0.002 0.4 0.12 0.119 0.58 0.27 1.694 
Inoculation 1 0.012ns 0.003ns 0.001ns 1.6** 0.02ns 0.467* 3.361ns 5.44* 0.007ns 
S 2 0.005ns 0.060** 0.010ns 0.38* 1.15* 0.074ns 5.778* 0.08ns 1.361ns 
Zn 1 0.003ns 0.003ns 0.003ns 1.43** 0.61ns 1.007** 1.361ns 2.78* 1.174ns 
Inoculation x S 2 0.003ns 0.003ns 0.002ns 2.27** 0.24ns 0.807** 10.111** 0.19ns 3.444ns 
Inoculation x Zn 1 0.001ns 0.007ns 0.001ns 1.85** 0.99* 1.418** 0.028ns 18.78** 5.840ns 
S x Zn 2 0.023* 0.023* 0.009ns 0.54* 0.77* 0.488** 0.111ns 0.36ns 4.528ns 
Inoculation x S x Zn 2 0.001ns 0.037** 0.022** 0.31* 1.90** 0.529** 8.778** 15.36** 0.778ns 
Error 22 0.005 0.004 0.002 0.08 0.18 0.051 0.891 0.59 2.149 
Total 35          

df=degree of freedom, NSPP =number of seed per pod (no plant-1), HSW=hundred seed weight (g 100 seed), DF=dates of 50% flowering, **, * 
and NS = significant at 1%, 5% and non-significant, respectively. 
 

Appendix Table 6. Mean square values of seeds yield, straw yield and harvest index 

Source of Variation df GY (kg ha-1) SY (kg ha-1) HI 
  Tsion Denzaz Mean Tsion Denzaz Mean Tsion Denzaz Mean 

Replication 2 6465.7 9459 1763 3303.3 2979 2532 0.00064 0.00121 0.000112 
Inoculation 1 6139.7ns 16826ns 455ns 19111.9* 5786ns 11393ns 0.00112* 0.000086ns 0.000153ns 
S 2 87622.6** 200344** 135520** 10816.5ns 68025** 32119ns 0.000349ns 0.000982ns 0.000045ns 
Zn 1 18.2ns 13298ns 2621ns 61639.2** 55005* 56ns 0.00355** 0.00052ns 0.00021ns 
Inoculation x S 2 19273.8ns 15351ns 5146ns 59306** 42681* 48801** 0.00105* 0.00105ns 0.000917* 
Inoculation x Zn 1 9283ns 11431ns 87ns 1.3ns 6389ns 1662ns 0.00053ns 0.0000121ns 0.000046ns 
S x Zn 2 45861.8* 42493* 40436* 15665.2* 171400** 39889** 0.00106* 0.00202ns 0.000042ns 
Inoculation x S x Zn 2 39886.9* 52565* 34978* 4280.6ns 61494** 11741* 0.00078* 0.00681* 0.00132** 
Error 22 11908.7 12131 6116 3817.5 2979 2839 0.00021 0.00173 0.000142 
Total 35          
df=degree of freedom, GY =seed yield (kg ha-1), SY=straw yield (kg ha-1), HI= Harvest Index, **, * and NS = significant at 1%, 5% 
and non-significant, respectively. 
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Appendix Table 7. Mean square values of total nitrogen and phosphorus uptake 

Source of Variation df TNU (kg ha-1) TPU (kg ha-1) 
  Tsion Denzaz Mean Tsion Denzaz Mean 
Replication 2 15.9 1.4 6.7 0.16 0.17 0.02 
Inoculation 1 3.7ns 54.3** 21.7* 6.27** 0.06ns 1.266** 
S 2 310.9** 569.2** 429.5** 42.28** 18.52** 29.193** 
Zn 1 24.3ns 77.8** 47.3** 2.52** 4.85** 3.577** 
Inoculation x S 2 26.3ns 3.3ns 9.9* 0.97** 2.06** 1.395** 
Inoculation x Zn 1 4.6ns 10.4* 7.1ns 0.93* 0.02ns 0.302ns 
S x Zn 2 42.9* 46.9** 10.0* 2.05** 11.65** 3.019** 
Inoculation x S x Zn 2 29.8** 0.03* 7.1* 0.55* 3.04** 0.344* 
Error 22 8.2 2 2.3 0.1 0.3 0.09 
Total 35       

df=degree of freedom, TNU =total nitrogen uptake (kg ha-1), TPU=total phosphorus uptake (kg ha-1), **, * and NS = significant at 1%, 
5% and non-significant, respectively. 
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Appendix Table 8. Correlation analysis of soil before planting 

**Significant at the 1% level; *Significant at the 5% level 

 pH CEC EC  Na K Ca Mg OM N P S Fe Cu Mn Zn 
pH 1                
                 
CEC 0.58 1               
                 
EC 0.84 0.25 1              
  0.69               
Na 0.77 0.22 0.92*  1            
  0.73 0.03              
K -0.25 -0.37 -0.43  -0.12 1           
  0.54 0.47  0.84            
Ca 0.89* 0.81 0.77  0.71 -0.49 1          
  0.10 0.13  0.18 0.41           
Mg -0.75 0.07 -0.86  -0.88* -0.05 -0.49 1         
  0.92 0.06  0.05 0.94 0.40          
OM 0.43 -0.45 0.66  0.52 -0.11 0.11 -0.81 1        
  0.45 0.22  0.37 0.86 0.86 0.10         
N 0.84 0.25 1.00**  .919* -0.43 0.77 -0.86 0.66 1       
  0.69 0  0.03 0.47 0.13 0.06 0.22        
P -0.48 -0.39 -0.67  -0.40 0.96* -0.65 0.23 -0.30 -0.67 1      
  0.52 0.21  0.50 0.01 0.23 0.70 0.63 0.21       
S 0.32 0.02 0.65  0.83 -0.11 0.42 -0.57 0.23 0.65 -0.31 1     
  0.97 0.23  0.09 0.86 0.49 0.32 0.71 0.23 0.61      
Fe -0.80 -0.72 -0.71  -0.48 0.75 -0.89* 0.35 -0.21 -0.71 0.84 -0.15 1    
  0.17 0.18  0.42 0.14 0.04 0.57 0.74 0.18 0.08 0.82     
Cu -0.54 -0.01 -0.81  -.952* 0.04 -0.51 0.81 -0.48 -0.81 0.30 -0.94* 0.25 1   
  0.99 0.10  0.01 0.95 0.39 0.10 0.42 0.10 0.62 0.02 0.69    
Mn -0.77 -0.27 -0.57  -0.73 -0.40 -0.54 0.79 -0.36 -0.57 -0.15 -0.36 0.25 0.59 1  
  0.66 0.32  0.16 0.50 0.35 0.11 0.56 0.32 0.82 0.56 0.68 0.29   
Zn 0.00 0.44 -0.32  0 0.58 0.11 0.21 -0.70 -0.32 0.57 0.08 0.25 0 -.379 1 
  0.46 0.60  1 0.30 0.86 0.74 0.19 0.60 0.31 0.90 0.69 1 .529  


